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SYNOPSIS

According to the theory of Quantum Chromodynamics, the interaction between its

fundamental constituents, quarks and gluons, can lead to the different state of matter

under extreme conditions of high baryon density and/or high temperature. This

new form of strongly interacting matter is known as Quark-Gluon-Plasma (QGP).

At very high temperature and low baryon chemical potential, the transition between

normal to QCD matter is believed to be a smooth crossover, whereas at high baryon

density it is expected to be a first order phase transition. The QCD Critical Point is

located at the junction of the first order transition and crossover. The Critical Point

thus occupies a significant location in the QCD phase diagram. The Relativistic

Heavy Ion Collider (RHIC) has undertaken its Beam Energy Scan program to search

for the Critical Point as well as to study the hadronic to QCD phase transition in

more detail. With the variation of the beam energy, both temperature and baryon

chemical potential can be simultaneously controlled, and hence the major part of

the QCD phase diagram can be accessed experimentally. The STAR experiment, at

RHIC has collected a large amount of data for Au+Au collisions at center of mass

energies from 7.7 GeV to 200 GeV, which correspond to baryon chemical potentials

from 450 MeV to 20 MeV, respectively.

One of the most plausible signatures of the critical point has been predicted to

be the large event-by-event fluctuations of thermodynamic quantities measured in

high-energy heavy-ion collisions. This is because of the fact that the thermody-

namic susceptibilities and the correlation lengths of the produced systems diverge

at the critical point. Various QCD inspired models and lattice calculations predict
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that higher moments of conserved quantities, such as distributions of net-charge,

net-baryon and the net-strangeness are associated with the higher order thermo-

dynamic susceptibilities and exhibit strong dependence on the correlation strength.

This makes the moments, such as, mean (M), standard deviation (σ), skewness

(S), and kurtosis (κ), etc., of the conserved quantities and their products to be

sensitive probes in the location of the critical point. These moments are related to

the correlation length. The higher order moments are related to higher power of

the correlation length and hence the signal of the critical point can be amplified

by the higher moments of the conserved charged distribution. In order to cancel

the volume term in the susceptibilities, different combinations of the moments are

constructed, such as σ2

M
, Sσ, and κσ2, which can provide direct comparison of exper-

imental results to lattice calculations. Thus at the critical point, one would expect

large non-monotonic behavior of these products of moments as a function of beam

energy. In addition, recent lattice QCD model estimations have proposed the extrac-

tion of freeze-out parameters of the collision from the analysis of higher moments

of net-charge distribution. Among all conserved quantities, experimentally it is ad-

vantageous to study net-charge distributions. The fluctuations of net-charge include

effects from net-baryon and net-strangeness. The much-awaited data from the RHIC

Beam Energy Scan program have been successfully analyzed for Au+Au collisions

at 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV. Various moments of the net charge

distribution and also their products have been estimated as a function of centrality.

The net-charge distributions have been corrected for centrality bin width correction

and auto-correlations have been taken care of. Various methods have been used for

estimating proper statistical errors. The procedures that correct the finite detection
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efficiency of charged particles have been developed and implemented in this analysis.

The centrality dependence of the moments has been understood by using the central

limit theorem, which assumes that each of the collisions is a collection of a finite

number of identical, independent emission sources. The statistical baseline for this

analysis has been estimated by using Poisson and Negative Binomial expectations

for the net-charge distributions. Various model simulations have also been done to

understand the baseline for the critical point. The final results of the beam-energy

dependence of the moments, mean, variance, skewness and kurtosis of net-charge

distributions are presented as a function of collision centrality for Au+Au collisions

at seven colliding energies from 7.7 GeV to 200 GeV. Event-by-event measurements

of the net-charge distribution are made within the pseudorapidity range from -0.5

to 0.5 with full azimuth, and within the transverse momentum window of 0.2 to 2.0

GeV/c. The σ2

M
increases with increasing beam energy. The centrality dependence

of Sσ shows that the values are close to Poisson expectations for higher colliding en-

ergies, but deviations are observed at lower energies. The κσ2 values for peripheral

collisions show no energy dependence. For the most central collisions, κσ2 show no

significant variation as a function of beam energy. Freeze-out parameters have also

been estimated from the products of the moments. A definite value for the Critical

Point could not be established from the results. Higher statistics data at all energies

as well as data for some more intermediate beam energy points will be needed to

come to definite conclusion regarding the existence of the Critical Point.
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Chapter 1
Introduction

It is believed that the Universe was created just after the hot Big Bang which was

followed by rapid cosmological inflation under which the matter underwent several

types of phase transitions. Within few microseconds of the birth of the Universe,

matter consisted of mostly quarks and gluons, in a condition called the quark-

gluon plasma (QGP). The deconfinement transition from QGP to hadronic matter

took place around the same time, after which bare quarks were not to be found.

This transition was governed by the theory of Quantum Chromodynamics (QCD).

Dedicated experimental programs have been going on for the last few decades to

search for the QGP matter in the laboratory and to understand the nature of the

primordial matter in detail. At extreme temperature and/or pressure, normal matter

undergoes a phase transition and QGP is formed. One of the major experimental

program is to map the QCD phase diagram and to locate the Critical Point of the

phase transition.
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Figure 1.1: The standard model, constitute the building blocks of the universe.

1.1 Quantum Chromodynamics

Quantum Chromodynamics is the theory of the strong interactions between quarks

and gluons. The quarks and gluons have three color charges, Red, Blue and Green

analogous to electric positive and negative charges in Quantum Electrodynamics

(QED). The different types of quarks, called flavor— u (up) , d (down), s (strange),

c (charm), t (top) and b (bottom) — are divided into three generations as shown in

Fig. 1.1. According to the quark model, the mesons and baryons — together known

as hadron — are made up of two and three quarks, respectively. The mesons are

made up of one quark and anti-quark, (qq̄). whereas baryons consist of three quarks

(qqq) and their anti-baryons are made up of their respective anti-quarks (q̄q̄q̄).
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Figure 1.2: The running coupling αs as a function of energy scale Q, measured in
different experiments and from theoretical calculations [2].

1.1.1 Deconfinement and Asymptotic freedom

The two important properties of QCD are Asymptotic freedom and Confinement.

According to the asymptotic freedom, the coupling between quarks and gluons de-

creases with the increase in momentum transfer. In other words, coupling between

quarks and gluons becomes stronger with increase of the distance between them

and weaker at short distances. Hence, the QCD is an asymptotically free theory.

This was first discovered by Frank Wilczek, David Gross and David Politzer. This

coupling strength as a function of energy scale is shown in Fig 1.2. The running

coupling strength [1] is defined as

α(Q2) =
12π

(33− 2Nf )log(Q2/ΛQCD)
. (1.1)
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Here, Nf is the number of flavor and ΛQCD is the QCD scale. This ΛQCD makes

the boundary between the quasi-free quarks and gluons, and hadrons (like, pions,

protons, etc). The exact value of ΛQCD is not known, but in theoretical calculations

it is taken approximately to be ΛQCD ∼200 MeV. Both the experimental data and

theoretical results show the asymptotic variation of QCD coupling strength as a

function of energy scale. Other aspect of QCD is confinement of color charged

particles (quarks and gluons). This is the phenomenon that quarks and gluons

cannot be isolated singularly. therefore quarks and gluons are not observed as free

particles in nature. They are always confined inside hadrons.

After the discovery of asymptotic freedom, J.C. Collins and M.J. Perry suggested

also that the hadronic matter, under high nuclear density or baryonic density, tran-

sit to QCD matter [3]. At extreme high temperatures, implying large momentum

transfer, the quarks and gluons are asymptotically free. The phase where hadronic

degrees of freedom transit to the phase of QCD matter, where color degrees of

freedom plays significant role, is known as the QCD phase transition. And, this

de-confined state of matter is coined as the Quark Gluon Plasma (QGP). Therefore,

under extreme high temperature and/or baryon density, the new form of matter,

QGP, can be created which was formed 10−6s after the Big Bang during the cre-

ation of the universe. These two extreme limits motivate the experimentalists to

perform heavy-ion-collision experiments in laboratory.

1.1.2 Quark Gluon Plasma and Heavy ion collisions

By colliding heavy-ions at ultra-relativistic energies, one can create a condition sim-

ilar the one that existed within a few micro seconds after a Big Bang. Collision
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of two Lorentz-contracted nuclei (pancakes), moving with almost the velocity of

light, deposit a large amount of kinetic energy in a short space-time interval. This

initial energy density results in particle production. At this time, mean free path

of the particles becomes of the order of the size of the system created. The sys-

tem tries to supercool and gets equilibrated through interaction among the partons.

One assumes local thermodynamical equilibrium, where the energy, pressure, and

temperature can be defined locally. After hadronisation, the hadron gas is pro-

duced which expands until feeze-out. The particles then stream in to the detectors.

The multiplicity density at mid rapidity can be used to calculate energy density by

Bjorken’s energy density expression [28].

In heavy ion collisions, under extreme condition of temperature and/or baryonic

density (or chemical potential), a transition of hadronic matter to QGP take place,

where average kinetic energy of the partons is much larger than the potential energy

between the partons. In the hadronic matter, isospin degrees of freedom dominate.

On the other hand, isospin, color and flavor degrees of freedom plays significant role

in the QGP state. For example, in ideal massless pion gas the degrees of freedom are

3 ( three charge or isospin states) whereas in the QGP state the degrees of freedom

are 37 (= 2 × 8 + 7
8
(3 × 2 × 2 × 2)). It includes two spin and eight color degrees

of freedom of the gluons, three colors, two flavors, two spin and two particle-anti-

particle degrees of freedom of quarks. The factor with 7/8 comes from the correct

statistics consideration. The strong increase in pressure and energy density imply

increase in degrees of freedom of QGP state. This type of transition is observed

in lattice QCD simulation, where the energy density and pressure of QCD matter
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abruptly increases at certain temperature as shown in Fig 1.3 [29].

1.2 Phase transition

In thermodynamics, phase transition are governed by the thermodynamical poten-

tial (or the Free energy) and its derivatives at the transition. As we know that

first derivative of free energy with respect to the temperature, or external magnetic

filed, gives the internal energy, the entropy, or the magnetization in magnetic mate-

rial. The second order derivative is related with specific heat and susceptibilities or

compressibility in fluid. Generally, phase transitions can be described by an order

parameter that is zero in one phase (usually called the disordered phase), non-zero

in the other phase (ordered phase). The order parameter plays a significant role in

characterizing the phase transition, like magnetization plays as order parameter in

the magnet, volume density in liquid-vapor transition, etc. In other words, in the

presence of external field the symmetry in the matter is explicitly broken and the

relevant order parameter then characterizes the phase transition [5].

In the infinite volume limit, if there is finite discontinuity in one of the first

derivative of the thermodynamical potential then the transition is first order phase

transition. The discontinuity is observed in the internal energy and entropy as a

function of temperature at the transition point. The gap or plateau in entropy with

respect to external field, for example temperature, is associated with the latent heat

required during the first order phase transition. But there may be latent required

heat without gap in the order parameter at the transition point. According to

Ehrenfest classification of phase transition, the nth-order transition are defined by
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Figure 1.3: The energy density (upper panel) and pressure (bottom panel), nor-
malized by temperature, in QCD with different number of degrees of freedom as a
function of temperature [29].
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the presence of the discontinuity in the nth-order derivative of the thermodynamical

potential. According to M. E. Fisher, in continuos (or crossover) transition, the first

derivative of the thermodynamical potential is continuos, whereas second derivative

is either discontinuous or divergent. In second order transition, one of the second

derivative of the thermodynamical potential is divergent, hence susceptibilities and

specific heat diverge at the second order phase transition. The end point of the first

order phase transition, where second order transition starts, is known as critical

point.

1.2.1 QCD Phase Diagram

The first QCD phase diagram was proposed in 1975 by Cabibbo and Parisi [6].

They proposed that the exponential increasing of mass spectrum (by Hagedron)

may lead to a second order phase transition for hadronic matter. The quarks lead

to the confined state in the low temperature region and starts deconfine at high

temperature limit. At that time no idea of chiral symmetry or non-perturbative

polyakov loop were familiar to the QCD phase transition. Figure 1.4 shows the

prevalent conjecture of the QCD phase diagram in T − µB plane. The transition

from hadronic matter to QCD matter, Quark-Gluon Plasma, can be envisaged by

the deconfinement and chiral symmetry restoration. For the QCD phase transition,

mass of the quark, number of flavor and color of quarks play significant role in deter-

mining the order of phase transition. In the limit of infinite quark mass, mq →∞,

for all quark flavor, at µB = 0, the transition from hadronic to deconfinement is

a 1st order. In the chiral limit, mq → 0, the phase transition corresponds to the

chiral symmetry restoration and it is also a 1st order phase transition for u, d and s
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Figure 1.4: The conjecture of the QCD phase digram in terms of the temperature
(T ) and chemical potential (µB) [7].
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quark flavor [9]. The chiral transition is of 2nd Order for mu,d = 0 and mass of the

strange quark, ms > mtri
s . This limiting point of the strange quark mass, ms = mtri

s

is known as tri-critical point [10]. While going from mq = 0 to mq = ∞, there is

a smooth cross-over from confinement to deconfinement transition. Whereas in the

real world non of the quark is the massless and nor infinitely large. Therefore for

the current quark mass, the existence of the true critical point is still questionable.

Therefore, the quark mass plays a key role for the understanding of the QCD phase

transition and the schematic representation using quark mass (known as Columbia

plot) is shown in Fig 1.5. In this plot, the first order transition for the deconfinement

and chiral symmetry are shown at the two corners (bottom-left and top-right) of the

diagram. In the QCD phase transition, there should be an order parameter which

behaves differently for the two-phase. In the case of chiral symmetry, it is chiral

condensate, < qq̄ > and the Polyakov loop, L, for the deconfinement transition

Ref [29]. The behavior of these order parameters responding two phase are listed

below.

chiral symmetric phase: < qq̄ >6= 0

chiral broken phase: < qq̄ > = 0

quark confinement phase: L = 0

quark deconfinement phase: L 6= 0

In Fig 1.4, at µB = 0, there is a non-analytic cross-over from hadronic to QGP

phase. whereas at large µB, the 1st Order transition is speculated between two these

phases [11, 12, 13]. It is expected that there is an end-point of the 1st Order phase

transition line, which is known as QCD Critical Point . At extremely large baryon
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Figure 1.5: Columbia plot for the QCD phase transition for 3-flavor QCD at µB =
0 [10].

density, µB >> ΛQCD, the coupling between QCD matter becomes asymptotically

free. Analogy to condense matter, like electron makes Cooper pair in m etal (super-

conductor), quarks in the quark matter, at low T , form Cooper pair and leading to

Color superconductor [14].

1.2.2 QCD Critical Point and its signatures

Lattice QCD calculations [15, 16], at vanishing chemical potential, reveals that the

fluctuations of the net-charge, net-baryon number and net-strangeness are very sen-

sitivities to the critical fluctuation. In (2+1)-flavor lattice QCD calculations, at zero

chemical potential, the quadratic fluctuations rise rapidly and quartic fluctuations

show a maximum values for net-charge (Q), net-baryon (B) and net-strangeness (S)

at the transition region, going from hadronic to partonic regime. The higher order



27

moments such as variance (σ2), skewness (S) and kurtosis (κ), discussed in Sec-

tion 4.1, of the conserved charges (X = Q, B, and S) are related to respective higher

order susceptibilities.

Figure 1.6: The quadratic (top panel) and quartic (bottom panel) susceptibilities
for for net-charge (Q), net-baryon (B) and net-strangeness (S)[15].

In Fig. 1.6, the quadratic susceptibilities (χB,Q,S2 ) of the net-baryon number, net-

charge and net-strangeness show rising trend up to transition temperature, whereas

at this temperature the quartic susceptibilities (χB,Q,S4 ) show large jump. It is ob-

served that in quadratic susceptibilities the net-charge sector shows large deviation
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than net-baryon number and net-strangeness whereas for quartic net-baryon sector

shows larger jump than net-charge and net-strangeness. Above transition tempera-

ture all the susceptibilities become same and equal to Stefan-Boltzmann limit (ideal,

massless quark gas). In Fig. 1.7, the ratio of the quartic to quadratic susceptibil-

ities of net-charge shows a large jump at transition temperature at zero chemical

potential. The HRG model prediction also shows rising trend above unity. The 6th

order to 2nd order susceptibilities of net-charge shows large fluctuation at transition

temperature at vanishing chemical potential.

Beside this, other QCD based model calculations [17](like σ-model) shows that

the correlation length, ζ, of the system are related to the various moments of the

conserved charges as follows,

σ2 ∼ ζ2; S ∼ ζ4.5; κ ∼ ζ8. (1.2)

In the thermodynamical limit, the correlation length diverges at the critical

point [18]. The higher order moments such as skewness and kurtosis grow faster as

compared to variance of the conserved charge distribution.

Other QCD based estimations [19], in the mean-field approximation, the third mo-

ments (skewness) of the net-charge, net-baryon and energy distributions carry in-

formation about the phase boundary in QCD phase transition. The sign change

of skewness, at the phase transition line, reveal the existence of the divergence of

susceptibilities. The QCD based Ising model calculation [20] reveals the negative

kurtosis in the phase transition line manifest the presence of critical point approach-

ing from the crossover line.
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Figure 1.7: The ratio of quartic to quadratic (top panel) and 6th order to 2nd
(bottom panel) order susceptibilities of net-charge distribution [15].
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Figure 1.8: The speed of sound with respect to T in QCD matter and ideal pion
gas [10].

Various other theoretical calculations which include interactions of quarks with

effective gluon fields such as the Polyakov loop extended Nambu-Jona-Lasinio (PNJL) [22]

and the quarkmeson (PQM) [23] models also show that ratios of χ4
Q/χ

2
Q and χ6

Q/χ
2
Q

for the net-charge exhibit large peaks at the critical temperature in the chiral

limit [24].

In addition, the speed of sound, c2
s, which is defined as the change in pressure

with respect to that of energy density at constant volume (∂P
∂ε

)V , vanishes at Tc as

shown in Fig 1.8. This decrease in speed of sound is because of the production of

resonances where there is no increase in kinetic energy in the system. This behavior

is observed in lattice QCD calculations [25].

Various QCD based model calculations and Lattice simulation predict different

points in the QCD phase diagram to be the critical point as shown in Fig. 1.9. The

exact location of the critical point may be accessed through the Heavy-Ion-Collisions
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Figure 1.9: The theoretical predictions for the QCD critical point in T − µB plane
(upper plot) and the table (lower panel) for the list of the theoretical prediction [21].
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at energies close to the predictions.

The main challenges, to probe the critical point, are the finite size and time

effects in heavy-ion-collisions. Due to the finite size of the fireball created during

heavy-ion-collision, the system survives for a finite time. It restricts the correlation

length, ζ, to grow. It has been shown that the finite size effect restrict ζ to be 6

fm [26]. In addition to this, if the system had infinite size, then ζ grows infinitely

large at critical point and hence it takes infinite time to grow. This is known as

critical slowing down. It has been shown that finite size effect affects critical slowing

down. The combined effect of the finite size and critical slowing down makes the

correlation length 3 fm at most [27]. This makes the heavy-ion-collision experiment

viable to access the signal of the critical point by event-by-event fluctuation analysis.

To achieve this goal Relativistic Heavy Ion Collision at BNL proposed Beam Energy

Scan program. The details are discussed in next section.

1.3 A glimpse of experimental signature of QGP

Some of the signatures of QGP have been observed in heavy-ion collisions at RHIC [4].

The high-pT hadron measurement in relativistic collisions reveals strong suppression

for inclusive charged particles [30] as shown in Fig.1.10. In addition, while no sup-

pression in the two particle azimuthal distribution of back-to-back jets is observed in

d+Au and p+p collisions, there is a strong suppression in Au+Au collisions indicat-

ing the formation of the dense medium during the initial stage of the collisions [30]

as shown in Fig 1.10. On the contrary, Fig 1.11 shows the nuclear modification

factor for direct photons which shows no suppression while other neutral particles
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Figure 1.10: The nuclear modication factor (RAB(pT ))for minimum bias and central
d+Au collisions, and central Au+Au collisions (upper panel) and the two particles
azimuthal distributions (bottom panel) for d+Au, p+p and Au+Au collisions at 200
GeV center of mass energy [30].
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Figure 1.11: The nuclear modication factor (RAA(pT )) measured in central Au+Au
at colliding energy 200 GeV for π0, η and direct photon [31].

such as π0 and η are suppressed [31]. This is because the photon interacts through

electromagnetic interaction while mesons interact through strong interactions. The

soft part, mainly pT < 2 GeV, of the transverse momentum carry the bulk proper-

ties of the system. Bulk properties of the system, like particles yield, flow, particles

correlation, multiplicity etc. carry information about the dense medium. In heavy-

ion-collisions, once the hot and dense matter created gets thermalized the inelastic

collisions ceases, which is called chemical freeze-out, (Tch) , After this there is no

further particles production. After chemical freeze-out, the kinetic freeze-out occurs,

where no further change in kinetic energy occurs. In Fig 1.12, the statistical thermal

( assuming thermalization of the system) fit with the data shows the chemical freeze-

out temperature, Tch = 160±4 MeV and chemical potential µB = 24±4 MeV [34] for

Au+Au collisions at
√
sNN= 200 GeV. Similarly the kinetic freeze-out information

can also be estimated from the hadronic spectra at given collision energy. With the
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Figure 1.12: (Upper panel) Transverse momentum integrated hadron ratio at mid
rapidity for Au+Au collisions. The horizon bars represent statistical model fits to
the measured yield ratios for stable and long-lived hadrons. (Bottom panel) The Tfo
as a function of average radial flow, < βT >, are plotted for different centrality [34].
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help of hydrodynamical motivated model and comparing with the experimentally

measured different particles spectra, the kinetic freeze-out temperature, Tfo and the

collective component have been estimated as shown in right panel of Fig. 1.12.

Besides these, the collective component arises due to the gradient of matter

density from center to periphery of the collision geometry. This matter gradient

creates a outward push to the inside matter and hence a collective flow develops. The

types of flow depend on the initial collision geometry like, radial (central collisions),

elliptic ( peripheral collisions), etc. In Fig. 1.13, v2, the measure of elliptic flow is

shown as a function of pT for mesons and baryons. It is observed v2 scales with the

number of valence quarks implying that partonic degrees of freedom develop at an

early stage of collisions. This partonic stage could be one of the possible signatures

of QGP.

In Ref. [32], it is argued that the plateau region in mean transverse momentum

as a function of multiplicity density (proxy of colliding energy) will indicate the

possible signature of the onset of the QGP formation and hadronic mixed phase. It

is analogous to latent heat required for the 1st order phase transition. In Fig. 1.14

shows the energy dependance of mean transverse mass, < mT >, mT =
√
m2 + p2

T

where m rest mass, of π, K, p and p̄ [33]. It is observed, above ∼ 10 GeV energy the

mean transverse mass remains flat as function of energy. It could be signature of

the 1st order phase transition for the QGP formation. Beside this, ratio of positive

charged kaon to pion, K+/π+, shows a peak around 7 GeV colliding energy [33],

which also could be signature of onset of de-confinement. There are ample of evi-

dence for the formation of QGP. The detail properties of QGP and the transition of

normal hadronic matter to QGP matter is under study both theoretically and ex-
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Figure 1.13: (a) The transverse momentum dependance of v2, measure of elliptic
flow, for various hadrons species in minimum bias Au+Au collisions at

√
sNN= 200

GeV. (b) The number of valence quark scaling of the v2 for baryons and mesons in
minimum bias Au+Au collisions at

√
sNN= 200 GeV [34].
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Figure 1.14: Mean transverse mass as a function of colliding energy for π, K and p
for Pb+Pb and Au+Au Collisions [33].

perimentally. The RHIC and LHC are the dedicated ongoing heavy-ion-experiment

for the understanding of this new form of matter.

1.4 Experimental overview on the search of QCD

Critical point

In spite of experimental challenges, as discussed previously , the intense search for

the QCD critical point and its signatures have been undertaken from SPS to RHIC

experiments. In NA49 experiment, transverse momentum fluctuation, ΦpT , [35, 36]

and the particle multiplicity fluctuation (the scaled variance) [37], ω, are used. In

this experiment, central Pb+Pb collisions are studied at 20A, 30A, 40A, 80A, and

158A GeV collision energy. Both ΦpT and ω, measure of transverse and particle

multiplicity fluctuation, show no increase or non-monotonic behavior [36, 37] as a

function of colliding energies. The system size dependance of the above fluctuations

are also studied for intermediate system C+C and Si+Si interaction at 158A GeV.

The higher moments of pT fluctuation, Φ(n)
pT have also been studied to amplify the
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signal of the critical point in the above colliding system. No critical point signa-

ture has been found in these results. Besides, it was suggested also that particle

ratio fluctuation might also provide the signature of critical point because hadron

production at freeze-out carry the of the nature of the deconfinement phase transi-

tion. The NA49 [40] and STAR [39] experiments have also analyzed the data for

dynamical fluctuation, σdyn, for the particle ratio like K/π, p/π, and K/p. In this

case, the difference of the width of the particle ratio fluctuation for data and that of

the mixed events are considered the dynamical fluctuation of particle ratio. These

results show no non-monotonic behavior as a function of the beam energies.

The NA49 intermittency result shows some clue for the presence of QCD crit-

ical point. In this analysis, second factorial moments, F2, of low-mass π+π− pair

in central Si+Si interaction at 158A GeV (which is
√
sNN= 17.8 GeV) are studied.

The magnitude of the net-proton and σ field are characterized by the order param-

eter for the second order phase transition associated with QCD critical point. In

this case, difference of F2 between data and mixed events, ∆F2(M), as a function

of transverse momentum space of bin, M , shows intermittency signal in the data.

The intermittency results for the Si+Si system approaches the QCD critical point

prediction [38]. These results provides strong evidence for existence of the critical

point in the proximity of the Si+Si and Pb+Pb freeze-out state.

Future experiments like NA61/SHINE at the CERN SPS, which is the successor

of the NA49 experiment, is dedicated experiment for the search of the critical point.

Whereas RHIC beam energy scan program aims to probe the QCD critical point in
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wide range of the temperature and baryon chemical point. Detail about the RHIC

beam energy scan (5 <
√
sNN< 39 GeV) program has been discussed in the chapter 2.

Besides this future collider JINR NICA (3 <
√
sNN< 9 GeV) and GSI FAIR (2.3 <

√
sNN< 8.5 GeV) have also planned of the search for QCD critical point.

1.5 Extraction of Freeze-out parameter

In heavy-ion-collision, statistical thermal model explains the hadronization process

where particles are believed to be produced from the thermal equilibrium at freeze-

out surface. This is to some extent understood by the HRG models. This freeze-out

surface is described by the freeze-out parameters such as, Temperature, Tf and

baryon chemical potential, µf . These freeze-out parameters are very useful to un-

derstand the phase boundary in QCD phase diagram. These freeze-out information

can be accessed by comparing lattice QCD based calculation of higher order suscepti-

bilities of conserved quantities with experimentally estimated higher order moments

of the conserved charge distribution. The detail theoretical work can be found in

the Ref. [41][42]. In this recent work, it has been seen that RQ
12 and RQ

31 shows

strong dependance on µB and T , respectively, as shown in Fig 1.15. These are re-

lated to the experimentally estimated M
σ2 (= RQ

12) and Sσ3

M
(=RQ

31) of net-charge

distribution.

Therefore, using M
σ2 and Sσ3

M
, freeze-out temperature and baryon-chemical poten-

tial can be estimated by direct comparison of data to Lattice QCD simulation. The

beam energy scan data from RHIC can also give information about the freeze-out

surface in the QCD phase diagram.
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Figure 1.15: Diagrammatic representation of two limiting cases of Binomial distri-
bution [41].

1.6 Organization of the thesis

The thesis is organized as follows. In Chapter 2, the details about the Relativistic-

Heavy-Ion-collider (RHIC) are mentioned. The goals of beam energy scan program

and data taken in the years 2010 and 2011 are discussed. In Chapter 3, the STAR

detector and trigger system are discussed. The higher moments of the multiplicity

distributions, moments generating function and the relation between higher mo-

ments and thermodynamical quantities have been introduced in Chapter 4. Besides

these, various baseline measurements like, Hadron Resonance Gas, results from var-

ious event-generators, Poisson and Negative Binomial expectations have been dis-

cussed. In addition to these, extraction of freeze-out parameters from the higher

moments of net-charge distribution has been introduced in this chapter. Details of

the analysis for higher moments of the net-charge distribution has been discussed

in Chapter 6. In this chapter, data sets, events and charged particles selection pro-

cedure are discussed. Beside these, centrality bin width correction, new centrality

determination, central limit theorem, both statistical and systematic uncertainty,

and finally efficiency correction for the higher moments have been discussed in de-

tails. In Chapter 7, the results for the higher moments of the net-charge distribution
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and their products such as, σ2

M
, Sσ and κσ2, have been discussed. Finally, the M

σ2

and Sσ3

M
have been compared with that of Lattice results to extract freeze-out pa-

rameters. In Chapter 8 and 9, the summary and outlook of the thesis have been

discussed, respectively.



Chapter 2
RHIC Beam Energy Scan Program

2.1 Relativistic Heavy Ion Collider

The Relativistically Heavy Ion Collider (RHIC), located at the Brookhaven National

Laboratory in Upton, New York, is a dedicated collider to study QCD. It began op-

eration in 2000 after 10 years of the development, construction and commissioning.

RHIC has two independent storage rings particle accelerators (arbitrarily assigned

as “Blue” and “Yellow” rings) as seen in Fig. 2.1. These double storage rings are

hexagonal shaped and 3.8 km long in circumference. The six interaction points (be-

tween the particles circulating in the two rings) are in the middle of the six relatively

straight sections, where the two rings cross, allowing the particles to collide. The in-

teraction points are enumerated by clock positions, with the injection near six. Two

large experiments, STAR and PHENIX, are located at six and eight respectively.

RHIC drives two intersections beam of gold (Au) ions collisions. In the acceler-

ation of heavy-ions, the journey of ions starts from Tandem to RHIC with various

stages. At the first stage, the electrons are stripped out from the Au ions by the

43
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Tandem van de Graaff accelerator with 2 MeV per nucleon of the kinetic energy

and a charge state of +32. The beam or bunch of ions enters from the Tandem to

the Booster, with a speed which is at about 5% the speed of light. The particles

are transferred to a the small circular Booster — known as Booster Synchrotron.

The ions are accelerated to higher energy — at this stage, each ion has a charge

state of +77. These highly-energetic-ions are injected into the Alternating Gradient

Synchrotron (AGS) at about 37% the speed of light. As they whirl around the AGS

and get accelerated, the ions get more energetic at about 99.7% the speed of light

and with charge of +79 state (with no electrons left). The beam is injected then

into the two rings of RHIC via a beam-line, known as AGS-To-RHIC (ATR) transfer

line. At the end of this line, there is a ”fork in the road,” where a switching magnet

bifurcates the ion bunches into one of two (red and blue) beam line.

In Fig. 2.2, the colliding energy w.r.t luminosity (left y-axis) and collision rate

(right y-axis) are plotted for different collision geometries, like p, S, I and Au, in

RHIC and AGS regime [53]. The luminosity and collisions rate decrease with

decreasing colliding energy in RHIC system.

2.2 Beam Energy Scan Program at RHIC

The RHIC experiments have claimed the formation of new form of matter — known

as QGP. It draws many attentions, both from the experimentalists and theorists,

to understand properties of QGP. To explore the wisdom about this new form of

matter, RHIC started its beam energy scan program in 2010.
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Figure 2.1: RHIC’s 2.4 mile ring has six intersection points where its two rings of
accelerating magnets cross, allowing the particle beams to collide.

Figure 2.2: RHIC collider capabilities in comparison with AGS. For various colliding
species from p+p to Au+Au collisions for its wide range of collision energies. The left
y-axis represents luminosity and that of right side represents collision rate (sec−1)
Ref. [53].
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2.3 Physics goal

The main goals of the beam energy scan program at RHIC are

• to locate the existence of Critical Point in the QCD Phase diagram,

• to find the evidence of the first order phase transition in the QCD Phase

diagram, and,

• to understand the properties of the QGP as a function of baryon chemical

potential.

Many theoretical developments have been made both in QCD as well as in sta-

tistical thermodynamic fields to understand the complex nature of the QGP matter.

The intriguing phenomena in QGP matter such as, constituent-quark-number scal-

ing of v2, hadronic suppression in central collisions, local parity violation in strong

interaction, etc, manifest the potential signature of the partonic plasma. The sta-

tistical thermal model approach has been made to understand the temperature and

chemical potential at the time of freeze-out of QGP. Figure 2.3 (left side) shows the

variation of temperature and chemical potential by controlling the colliding energy.

Therefore, in the heavy ion collision, varying colliding energy the QCD phase dia-

gram can be mapped in temperature and chemical potential plane. The variation

of the RHIC colliding energy from
√
sNN= 7.7 to 39 GeV along with 62.4 and 200

GeV covers the baryonic chemical potential from 410 to 20 MeV [67]. This program

provides a access to suitable and most interesting region in QCD phase diagram to

understand the bulk properties of the QGP.
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Why RHIC is suitable for beam energy scan?

Experimentally, RHIC’s running collider experiments, STAR and PHENIX, pro-

vides unique facilities for the beam energy scan program. The variation of particle

density (occupancy) in collider and fixed target experiments is shown in Fig. 2.4.

It shows that occupancy increases linearly with increasing center of mass energy in

the fixed target experiments whereas that in the colliding experiments varies negli-

gibly. This helps in better track reconstruction efficiency and particle identification

in colliding experiments as compared to fixed target experiments. Much larger cen-

ter of mass energy can be produced by collider experiment than the fixed target

experiment. The phase space variation in colliding experiment is less in the fixed

target experiment, that helps to understand the underlying physics from the wider

colliding energy range. Besides, RHIC is able to collide with a wide range of collision

energy for Au+Au collisions at nearly constant collision rate and luminosity. On the

other-hand, from the physics point of view, the initial temperature can be expected

to increase by a factor of 2-4 in going from fixed target to collider experiment [70].

The initial temperature (T) changes with the initial energy density, ε, (for ideal gas

ε ∝ T 4). For fixed heavy ion collision geometry, Au+Au, RHIC can vary its initial

temperature and energy density of the system formed during little bang by varying

only collision energy.

2.4 Beam energy scan program details

RHIC is able to run from varied energy range from
√
sNN= 5 GeV to 200 GeV for

Au+Au collisions. The recent PID upgrade of the Time of Flight detector in STAR

experiment has strengthened the particles identification capabilities which would
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Figure 2.3: (Left side)Relation between freeze-out temperature and chemical po-
tential with respect to colliding energy [65]. (Right side) RHIC Beam Energy Scan
program and schematic QCD phase diagram [66].

Figure 2.4: Particles density (occupancy) for fixed target and collider experiment
for different collision energy. [69].
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help in the search of the critical point. RHIC’s upgrade on electron cooling system

increases the luminosity at low energies.

The RHIC beam energy scan program had started in the year 2010 (RUN 10)

and first phase of the beam energy scan has been finished in 2011 (RUN 11). In

the table 2.1, the details about the RUN 10 and 11 have been listed. The inte-

grated nucleon-nucleon pair luminosity (pb−1) as function of the physics running

time (weeks) are shown in the Fig. 2.5.

Figure 2.5: The nucleon-pair luminosity is defined as LNN = A1A2L, where L is the
luminosity, and A1 and A2 are the number of nucleons of the ions in the two beam
respectively [68].
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Run Species Energy Duration Luminosity ions/bunch
[
√
sNN(GeV)] (in weeks) (nb−1) [109]

Au+Au 200 10.9 10.3 1.1
Au+Au 62.4 2.9 544 1.2

RUN 10 Au+Au 39 1.8 206 1.3
FY2010 Au+Au 11.5 4.6 4.23 1.1

Au+Au 7.7 1.4 7.8 0.5

Au+Au 200 6.4 9.79 1.30
RUN 11 Au+Au 19.6 1.4 10.3 0.9
FY 2011 Au+Au 27 1.1 63.1 1.45

Table 2.1: RHIC operating modes for Beam Energy Scan Program, Fiscal years
(FY) start on October 1st [68]. The duration of the physics runs are listed in 4th
column. Luminosity is the integrated luminosity on the running time. The number
of bunches during above runs are 111 and the ions per bunch is listed in column 6th
of the table.



Chapter 3
STAR experiment at RHIC

[Experimenters are the shock troops of science. —Max Planck]

STAR collaboration is composed of 58 institutions from 12 countries, with a to-

tal of 586 collaborators. It includs students, university faculty and staff, national

laboratory staff, and engineers.

3.1 The STAR detector system

The Solenoidal Tracker at RHIC (STAR) detector aims to study the strongly in-

teracting matter — known as the Quark Gluon Plasma — produced during the

heavy-ion collisions. STAR is able to measure many observables simultaneously to

study signatures of a possible QGP phase transition and to understand the space-

time evolution of the collision process in ultra-relativistic heavy ion collisions. The

large uniform acceptance of STAR provides a suitable environment for event-by-

event characterizations of heavy ion collisions and other hadronic physics study.
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The STAR detector system is specialized in the tracking of thousands of particles

produced by each ion collision at RHIC. The STAR magnet weighing 1,200 tons

provides suitable magnetic environment for the bending of highly energetic charged

particles during collisions. Below we give details of the detectors in the experiment.

Figure 3.1: STAR detector system front veiw.

3.2 STAR Detector overview

A picture of the STAR detector system and a sketch of detector components are

shown in Fig. 3.1 and 3.2, respectively.

Time Projection Chamber

When a charged particle traverses the TPC volume, it ionizes gas atoms every few

tenths of a millimeter along its path and leaves behind a cluster of electrons. The
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Figure 3.2: STAR detector system layout.

electron clusters then drift to the anode plane under the influence of an externally

applied electric field where their time of arrival and location is recorded. In the

STAR TPC, the electric field is provided by the outer field cage (OFC), the inner

field cage (IFC), and the high voltage central membrane (CM). The purpose of the

OFC and IFC are to provide a nearly perfect electric field in which the electrons

drift to the anode plane. It avoids the distortions of the recorded tracks. The OFC

and the IFC also serve to define the active gas volume and are designed to contain

the TPC gas and prevent it from being contaminated with outside air. The central

membrane is located in the middle of the TPC and is held at high voltage. The

anode and pad planes are organized into sectors on each end of the TPC and the

pads are held at ground potential. The OFC and IFC include a series of gradient

rings that divide the space between the central membrane and the anode planes.
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The total distance from the CM to either anode plane is slightly greater than 2

meters. There is approximately one ring per centimeter and the rings are biased by

a chain of resistors that connect to the CM, the anode plane ground, and each of

the gradient rings in-between. The rings are separated by two mega-ohm resistors

and there are 182 rings and 183 resistors in each chain.

Figure 3.3: The STAR TPC surrounds a beam-beam interaction region at RHIC.
The collisions take place near the center of the TPC.

Structure of the Field Cages :- The field cages are designed to be low mass

and ”thin” for particles to pass through them with very little energy loss but at

the same time strong enough to be self supporting. So the field cages were built

using two sheets of metal coated Kapton separated by a honeycomb of Nomex. The
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whole assembly was rolled into a tube and the sheets of Kapton were epoxied to the

honeycomb to form a strong sandwich of material. The Kapton in the outer field

cage (OFC) is laminated with a 35 micron layer of copper and the metal layer is

etched into stripes so that, after rolling the tube, the stripes become rings around

the tube. The inner field cage (IFC) is similar to the outer field cage, but the Kapton

is laminated with a thinner layer of Aluminum (9 micron) and the Nomex layer is

thicker (1.27 cm).

Figure 3.4: A cutaway view of the Outer and Inner field cage (OFC and IFC, respec-
tively) showing the construction and composition of the cylinder wall. Dimensions
(Typ) are in mm.

Choosing the Gas:- Gas purity, multiple scattering, drift velocity, cost, and

safety are few of the important issues while choosing appropriate gas mixture for

the TPC volume. STAR has chosen to run with gas mixtures: Ar (90%)-Methane

(10%) — known as P10 gas. The noble gas component has a very low affinity for free
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electrons while the organic gases quench the propagation of UV photons throughout

the TPC volume. The TPC operates with P10 gas and a drift field of about 145

V/cm.

Performance of the TPC:- The acceptance of the STAR TPC covers 1.8

units of pseudorapidity through the full azimuth. The transverse momentum, pT ,

of a track is determined by fitting a circle through the x, y coordinates of the

vertex and the points along the track. The total momentum is calculated using

this radius of curvature and the angle that the track makes with respect to the z

axis of the TPC. The charge state of the particle is identified by using the Helix of

the reconstructed charged tracks in TPC. The identification of the charged particles

like, π+(π−), K+(K−) and p(p̄), is done by measuring their ionization energy loss

(dE/dx) in the TPC gas. The large range of charged particles can be identified

by TPC ranging from 0.15 < pT < 30 GeV/c. The relative momentum resolution,

∆p/p, for pions is about 3% at pT = 1 GeV/c. For the detection of weakly-decaying

particles, like Λ and Ξ, the invariant mass technique and topological reconstruction

methods are used. For a minimum ionizing particle, MIP, the dE/dx resolution in

the STAR TPC is 6-8% for a track with the maximum of 45 sampled dE/dx points.

A maximum of 45 hit points per track can be reconstructed within the TPC radius

limits of 0.5 < r < 2 m.

The electron drift velocity in P10 is about 5.45 cm/µs at 130 V/cm electric

filed. Details of the charged particle detection efficiency will be discussed later in

the thesis.
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Figure 3.5: A cutaway view of an outer sub-sector pad plane. The cut is taken along
a radial line from the center of the TPC to the outer field cage so the center of the
detector is towards the right hand side of the figure. The figures show the spacing
of the anode wires relative to the pad plane, the ground shield grid, and the gated
grid. The bubble diagram shows additional detail about the wire spacing. The inner
sub-sector pad plane has the same layout except the spacing around the anode plane
is 2 mm instead of the 4 mm shown here. All dimensions are in millimeters.
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Figure 3.6: The anode pad plane with one full sector shown. The inner sub-sector
is on the right and it has small pads arranged in widely spaced rows. The outer
sub-sector is on the left and it is densely packed with larger pads.

Time Of Flight, TOF

To enrich the identification of the charged particles over wider range of momentum,

TOF detector system was introduced. It consists of two detectors subsystems, one

called the pVPD, the Pseudo Vertex Position Detector, (the start detector) and the

other called the TOFp, Time-Of-Flight Patch, tray (the stop detector). Each of these

detector subsystems is based on conventional scintillator or phototube technology.

It includes custom high-performance front end electronics and common digitization

in CAMAC. The Fig. 3.6 shows the diagrammatic representation of the STAR TOF

subsystems in association with TPC and beam pipe. The time resolution of the

TOF is about 100ps. The time interval, ∆t, is estimated from the reconstructed

tracks in the STAR TPC by the track extrapolation to the TOFp. Hence, the

STAR TPC provides the momentum, p, and total path length, s, using STAR

geometry that helps estimate the inverse velocity, 1/β for the TOF matched track
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Figure 3.7: The Particle identification by dE/dx vs momentum of particles using
TPC (top panel) and together with TOF detector (bottom panel) by square of mass
vs momentum of the particles in STAR detector system [47].
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by 1/β = c∆t/s. where c is the speed of the light. The inverse velocity and

momentum for a given particles are used for the estimation of the associated mass,

M , as M = p
√

(1/β)2 − 1. It improves the PID identification capabilities up-to

∼ 0.3 < p < 1.7 − 1.9 GeV/c for direct π/K/p, whereas for (π + K)/p the upper

range of momentum is extended up-to 2.8-3.0 GeV/c. The details about the STAR

TOF detector system can be found in Ref. [48].

Figure 3.8: The schematic diagram for the STAR TOF subsystems with the associ-
ation of STAR TPC and beam pipes.

Barrel Electromagnetic Calorimeter, BEMC

In STAR detector system, BEMC plays a significant role for the detection of photons,

electrons, π0 and η mesons with large STAR acceptance both for the pp and AuAu

collisions. It also contributes to trigger system in STAR, capable of triggering on

high-pT physics. It is situated inside the STAR solenoidal magnet coil and covers

|η| ≤ 1.0 in full azimuth. The details of the BEMC can be found in Ref. [45].
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Endcap Electromagnetic Calorimeter, EEMC

Supplementing the BEMC in the forward region 1 < |η| ≤ 2, the EEMC covers the

full azimuth of STAR detector system. Like BEMC, it plays an important role in

the detection of the photon, electromagnetic decaying mesons like, π0 and η in the

energy region 10-40 GeV. It also helps in high pT triggering system in STAR and

discriminating pre-shower and post-shower layers intended to discriminate hadrons

from electrons. The details of the EEMC can be found in Ref.[46].

Photon Multiplicity Detector, PMD

The PMD is one of the gas ionization detector with high granularity within the

pseudorapidity range 2.3 to 3.5 in full azimuth, located at 550 cm from the vertex

and outside the STAR magnet. It is designed to measure the photon multiplicity at

forward region of the STAR detector system. It comprises two plane — charged par-

ticle veto and pre-shower plane. These two planes are used to discriminate charged

hadrons from the photon cluster produced during shower formation in the lead plane

placed in between these two planes. Each plane consists of 24 super-module. Each

super-module consists of 4 to 9 unit module. A honeycomb of 24×24 cells forms a

unit module. This is a rhombus of side approx. 254 mm having identical boundaries

on all the four sides. Cell walls at the boundary are kept half as thick as those inside

so that adjacent unit modules join seamlessly.

The detail about the PMD can be found in Ref. [49].
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Figure 3.9: (a) Cross-sectional view of unit cell and the cathode extension in it and
(b) layout of the STAR PMD. Thick lines indicate super-module boundaries. There
are 12 super-modules each in the pre-shower plane and the veto plane. Divisions
within a super-module denote unit modules [49].
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3.3 STAR Trigger and DAQ system

The STAR trigger system plays a significant role for the event selection at the RHIC

interaction point with beam crossing rate ∼10 MHz. In the STAR detector system,

for Run 10 (year 2010) and Run 11 (year 11), the fast detectors like, ZDC, EMC,

BBC, VPD, etc., were used to start the amplification-digitization-acquisition cy-

cle for the slower detector systems. The slower detector systems like, TPC, FTPC,

TOF, PMD, are operated at the rates of ∼100 Hz. These slow detectors are fed with

the Trigger Control Unit (TCU) which is then connected with the Data Acquisition

(DAQ) system through various level like, Level-0/-1/-2/-3 triggering system. The

jobs done by these level triggers are: (i) selecting central and peripheral Au+Au

events based upon multiplicity of that event, (ii) rejecting beam-gas events compar-

ing vertex position from the interaction point and finally (iii) event selection based

upon the online reconstruction of tracks of each particles. The details about the

STAR trigger system can be found in the Ref. [50, 51]. The STAR DAQ system is

controlled by RHIC Computing Facility (RCF). The RCF plays the important role

for the storage of the STAR data at the raw level by using a High Processing Storage

System (HPSS). Details about the STAR DAQ system is discussed in Ref. [52].



Chapter 4
Moments of the multiplicity distributions

The main goal of the heavy-ion-collisions at ultra-relativistic energies is to study

the QGP matter. The event-by-event fluctuation of the multiplicity, transverse

momentum, particles ratios, temperature, etc. are some of the observables which

help in exploring QGP as also in the search for the Critical Point in the QCD

phase diagram. To probe to the QCD Critical Point, various observables have been

proposed. Among them transverse momentum, pT , multiplicity fluctuation, particle

ratio fluctuation [54, 55, 56], etc. have been studied by the experiments, CERES,

NA49, STAR.

Lattice and other QCD based models have proposed higher moments of conserved

charges (such as net-charge, net-baryon and net-strangeness) to be novel probe in

the search the QCD critical point in phase diagram. In the next section, the details

about the higher moments have been discussed.
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4.1 Higher moments of event-by-event multiplic-

ity distribution

4.1.1 Introduction to higher moments

In the mathematical statistics, a random variables X are characterized by certain

probability density functions (pdf ), f(x). All characteristic properties of these pdf

are conveyed in terms of the expectation values, E[g(X)], as follow

E[g(X)] =

∫
g(x)f(x)dx (4.1)

(4.2)

where g(x) represents any function of the random variable X and integration is over

all values of X provided the function is integrable under certain limit. The nth order

moment of the pdf , which is defined as

µn = E[Xn] =

∫
xnf(x)dx (4.3)

The 1st order moment is commonly known as mean, µ1 or only µ. The nth order

central moment is defined as

νn = E[(X − µ)n] =

∫
(x− µ)nf(x)dx (4.4)

Here the term central is due to the integration of function g(X) around its mean
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value µ. This implies 1st order central moment is simply zero as
∫

(x− µ)f(x)dx =∫
xf(x)dx − µ

∫
f(x)dx = µ − (µ × 1) = 0 . The 2nd, 3rd and 4th order central

moments are defined as,

ν2 =

∫
(x− µ)2f(x)dx, (4.5)

ν3 =

∫
(x− µ)3f(x)dx, (4.6)

ν4 =

∫
(x− µ)4f(x)dx (4.7)

The 2nd order central moments is known as variance, σ2. it is expressed as follows

σ2 = ν2 = µ2 − µ2. (4.8)

Similarly, 3rd central moments can be derived in terms of nth order moments as

follows,

ν3 = E[(X − µ)3],

= E[X3 − 3µX2 + 3µ2X − µ3],

= µ3 − 3µµ2 + 3µ3 − µ3,

= µ3 − 3µµ2 + 2µ3 (4.9)
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The general expression of the nth order central moments can be expressed in terms

of nth order moments as follows

νk = µk −
(
k

1

)
µk−1µ1 + .......+ (−1)r

(
k

r

)
µk−rµ

r
1

+.......+ (−1)k−1(

(
k

k − 1

)
− 1)µk1 (4.10)

Now, these central moments play a significant role in understanding the shape of a

pdf . The skewness, S, of a pdf is defined as,

S =
ν3

ν
3/2
2

=
ν3

σ3/2
. (4.11)

The positive and negative values of the skewness qualitatively show the distribu-

tion of the random variable X skewed towards right and left side of the mean of

the distribution as shown in the Fig. 4.1. More generally skewness represents the

asymmetry of the distribution. Similarly, the kurtosis, κ, is associated with the 4th

and 2nd order central moments of a pdf as follows,

κ =
ν4

ν2
2

=
ν4

σ4
. (4.12)

The kurtosis of the normal distribution is equal to 3. So to normalize the kurtosis

with respect to normal or Gaussian distribution, 3 is subtracted and final expression

for the kurtosis is used as

κ =
ν4

σ4
− 3. (4.13)
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Figure 4.1: Skewness of the distributions.

Figure 4.2: Kurtosis of Various distributions.
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The kurtosis represents the peakedness and tailed-ness of the distribution as shown

in the Fig. 4.2. In this figure, each distribution represents different kurtosis values.

Similarly, higher order moments can be constructed like 5th, 6th order, etc. which

carry more information about the pdf .

4.1.2 Moments generating function

”A generating function is a clothesline on which we hang up a sequence of numbers

for display.” —Herbert Wilf

The moments can also be hung up through its generating function known as,

Moment generating functions, mgf . For a random variable X, and a real dummy

number t, the mgf can be defined as

MX(t) = E[etX ] =

∫
e tx f (x )dx . (4.14)

The necessary condition for the existence of the mgf : ∀ t −→ X is bound and

∃ t = 0 : M(0) = E(1) = 1. Expanding etx in the above equation

E[etX ] = E[1 + tX +
t2X2

2!
+ .....]

= 1 + E[X]t+ E[X2]
t2X2

2!
+ E[X3]

t3X3

3!
+ ...... (4.15)

The various moments can be constructed at using dummy variable, t = 0 by

µn = E[Xn] =
dnMX(t)

dtn
|t=0 (4.16)

The central moments can also be constructed by X −→ Y , where Y = X − µ. For
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example,

E[Y n] = E[(X − µ)n] = (
dn

dtn
[e−µtMX(t)])t=0. (4.17)

Relation between Moments and Cumulants

The quantities cumulants of a pdf can be expressed in terms of the moments by

invoking cumulant generating function, cgf. The cgf , CX for dummy variable t, is

defined by

CX(t) = lnMx(t)

≡ c1t+ c2
t2

2!
+ c3

t3

3!
+ · · ·. (4.18)

Here like mgf , there is no constant term in cgf and cn represents the nth order

cumulants. The relation between cumulants and moments can be constructed as

follows

dCX(t)

dt
=

1

MX

dMx(t)

dt
(4.19)

⇒MX(t)
dCX(t)

dt
=

dMx(t)

dt

⇒ (1 + µ1t+ µ2
t2

2!
+ µ3

t3

3!
+ · · ·)

× (c1 + c2t+ c3
t2

2!
+ · · ·)

= (µ1 + µ2t+ µ3
t2

2!
+ · · ·). (4.20)
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Now, comparing coefficients of like powers of t from both sides, it can be found

µ1 = c1,

µ2 = c2 + c1µ1,

µ3 = c3 + 2c2µ1 + c1µ2,

µ4 = c4 + 3c3µ1 + 3c2µ2 + c1µ3,

· · · ·

µk = ck +

(
k − 1

1

)
ck−1µ1 + · · ·+

(
k − 1

r

)
ck−rµr + c1µk−1. (4.21)

Using above expressions, cumulants can also be expressed only in terms of moments

as follows

c1 = µ1,

c2 = µ2 − µ2
1 = ν2,

c3 = µ3 − 3µ2µ1 + 2µ3
1 = ν3,

c4 = µ4 − 4µ3µ1 + 12µ2µ
2
1 − 3µ2

2 − 6µ4
1 = ν4 − 3ν2

2 .

(4.22)

So, it can be easily understood that mean(M), standard deviation(σ), skewness(S)

and kurtosis(κ) are related with cumulant as follows

M = c1, σ = c
1/2
2 , S =

c3

c
3/2
2

, κ =
c4

c2
2

(4.23)

These observables are mainly used in this thesis work.



72

Properties of the cumulants

1. Additivity:-

if X1, X2, ....., X(n) are independent random variable, and CXi
(t) for i=1, 2,

3,...,n is the cgf for Xi the cgf of Sn = c1X1 + c2X2 + .....+ cnXn is given by

CSn(t) =
∑
i

CXi
(cit). (4.24)

2. Shifting of origin:-

For X → X + a, c1 → c1 + a.

Where all other higher cumulant remains invariant.

3. Changing scale:-

For X → aX, cr → arcr

4.1.3 Relation between moments and thermodynamic quan-

tities

Thermodynamical quantity, like pressure, entropy, etc., can be derived from the

partition function, Z of the system and pressure, P , can be expressed, in the ther-

modynamic limit, as follows

P (T, µB, µQ, µS) = lim
V→∞

T

V
lnZ(T, V, µB, µQ, µS) (4.25)

Here T, V are the temperature and volume of the system. The baryonic, charge and

strangeness chemical potential can be represented by µB, µQ and µS respectively.

The nth derivatives of thermodynamic susceptibilities of conserved quantities q, can
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be defined as

χ(n)
q =

∂n[p/T 4]

∂(µq/T )n
, q = B,Q, S (4.26)

The conserved charge fluctuation can be expressed as δNq = Nq − 〈Nq〉. The mean

and variance of the conserved charge distribution can be expressed in terms of the

derivatives of thermodynamic susceptibilities as follows

Mq ≡ 〈Nq〉 = V T 3χ(1)
q , (4.27)

σ2
q ≡ 〈(δNq)

2〉 = V T 3χ(2)
q , (4.28)

(4.29)

The skewness and kurtosis can be expressed in terms of the 3rd and 4th order ther-

modynamic susceptibilities as follows

Sq ≡
〈(δNq)

3〉
σ3
q

, (4.30)

κq ≡
〈(δNq)

4〉
σ4
q

− 3, (4.31)

where

〈(δNq)
3〉 = V T 3χ(3)

q , (4.32)

〈(δNq)
4〉 − 3〈(δNq)

2〉2 = V T 3χ(3)
q , (4.33)

Similarly even higher derivatives of susceptibilities, χ
(6)
q , χ

(8)
q , etc., are related with

higher order of the moments,〈(δNq)
6〉 and 〈(δNq)

8〉 etc., of the conserved charge dis-
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tribution. Various suitable moments products are constructed to cancel the volume

term for the above expressions.

σ2
q

Mq

=
χ

(2)
q

χ
(1)
q

, Sqσ
2
q =

χ
(3)
q

χ
(2)
q

, κqσ
2
q =

χ
(4)
q

χ
(2)
q

, (4.34)



Chapter 5
Baseline for higher moments of net-charge

multiplicity distribution

To understand the experimental signature of the QCD Critical Point, one has to

understand the sources of background fluctuation originating from different sources

like, statistical fluctuation, fluctuations related to non-critical phenomena, etc. To

understand statistical fluctuation, Poisson and Negative Binomial distribution are

assumed for positive and negative charged multiplicity distribution. Background

fluctuations in the heavy-ion-collision like, jet-interaction, jet-quenching, baryon

stoping, hadronic re-scattering, resonance production and thermal equilibrium as-

sumption have been studied by using various event generators like HIJING, UrQMD

and THERMINATOR-2 . These event generators are based on non-critical phe-

nomena, and thus provide suitable baseline for the critical point search in heavy-

ion-collision. The details about these models have been discussed in the following

sections.
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5.1 Hadron Resonance Gas Model

In this model, Ref. [58], the system is assumed to be consisting of all the hadrons

and resonance gas with interactions among themselves at the thermal and chemical

equilibrium. Figure 5.1 shows the ratio of susceptibilities, χ
(4)
Q /χ

(2)
Q , χ

(3)
Q /χ

(2)
Q , and

χ
(2)
Q /χ

(1)
Q are plotted as a function of beam energy. The corresponding values for

√
sNN= 200, 62.4, 39, 11.5 and 7.7 GeV have been listed in Table 5.1. The HRG

models predicts that σ2

M
= χ

(2)
Q /χ

(1)
Q increases and Sσ= χ

(3)
Q /χ

(2)
Q decreases with

increasing beam energy. The κσ2= χ
(4)
Q /χ

(2)
Q shows no energy dependence at high

energy and negligible energy dependence at low energy. The expression for the

susceptibilities, for even n, of the net-conserved charge is expressed as

χ
(n)
Q =

1

T 3V
(ln Z|Q|=1 (T, µX) + 2n ln Z|Q|=2 (T, µX)). (5.1)

Due to the contribution of the second term in the above expression, κσ2=χ
(4)
Q /χ

(2)
Q

shows above unity for the net-charge distribution. This is because of the contribution

of double charged baryons, like ∆++, in the net-charge distribution. This model sets

the baseline for the QCD critical point search. Any deviation from this baseline may

indicate the signature of the dynamical fluctuation at freeze-out transition. If the

QCD critical point exist in the phase diagram and the hadronization happens at

the freeze-out line, then higher moments of the conserved charge distribution could

show large deviation from the HRG model prediction.
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√
sNN(GeV) κσ2 Sσ σ2

M

200 1.75 0.0309 0.6779e+02
62.4 1.76 0.0959 0.2197e+02
39 1.77 0.1483 0.1425e+02

11.5 1.85 0.3921 0.5394e+01
7.7 1.86 0.4948 0.4176e+01

Table 5.1: The HRG model predictions for κσ2, Sσ, and σ2

M
at different beam energy

for the net-charge distributions.

Figure 5.1: The HRG model predictions for κσ2= χ
(4)
Q /χ

(2)
Q , Sσ= χ

(3)
Q /χ

(2)
Q , and σ2

M
=

χ
(2)
Q /χ

(1)
Q at different beam energy for the net-charge distributions [58].
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5.2 Results from event generators

To understand various physics processes which contribute to the moments of net–

charge distributions, three different models have been used, such as, a QCD based

model (HIJING [59]), a transport model (UrQMD [60]) and a thermal model,

THERMINATOR-2 [61].

Figure 5.2(a) shows the net-charge distributions for top central (0-5 % of total

cross section) collisions for four center-of-mass energies. It has been observed that

the mean of the distributions is close to zero for high energy collisions and shifts

towards positive values for lower energies. The distributions are seen to be wider for

higher energy collisions compared to those of the lower energies. Figure 5.2(b) shows

net-charge distributions for three different centrality classes for Au + Au collisions

at
√
sNN= 39 GeV. It is seen that from peripheral to central collisions, the mean as

well as the width of the distributions increase.

The results of the above event generators are compared to those of the Hadron

Resonance Gas (HRG) [58] model predictions. Because of the absence of any crit-

ical phenomenon in these models, they set a baseline for the measurements at the

Relativistic Heavy-Ion Collider (RHIC). The effect of particles species, resonance

decay and all above models comparison have been discussed. Although our concern

is mainly with moments of inclusive charged particles, it is important to obtain the

effect of each particle species on the total net–charge distributions. These species

mostly comprise of π+, π−, K+, K−, p, and p̄, so the effect of net–pion, net–kaon

and net–proton distributions on the net–charge distributions needs to be studied. At

the generator level, the knowledge of the identity of each particle makes it possible

to perform this study.
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Figure 5.2: The net-charge distributions obtained from UrQMD for Au + Au col-
lisions: (a) for central collisions at

√
sNN= 7.7, 19.6, 39, and 200 GeV, and (b) for

three centralities (0-5%, 30-40%, and 60-70% of total cross section) at
√
sNN= 39

GeV [62].
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Figure 5.3: The (a) mean, (b) standard deviation, (c) skewness and (d) kurtosis
for AuAu collisions at

√
sNN=39 GeV as a function centrality, expressed in terms

of number of participating nucleons, for net–charge, net–pion, net–kaon and net-
proton.
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Figure 5.4: Products of moments, (a) Sσ and (b) κσ2, plotted with respect to the
average number of participating nucleons, for net–charge, net–pion, net–kaon, and
net–proton distributions.
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Figure 5.5: Products of moments, (a) Sσ and (b) κσ2, plotted with respect to AuAu
collisions at different colliding energies. The moments are obtained from net–charge,
net–pion, net–kaon, net–proton distributions.

The centrality dependence of the contributions from different particle species to

the moments of net–charge distributions have been studied using UrQMD for AuAu

collisions at
√
sNN=39 GeV. Inclusive charged particles as well as identified particles

are selected in the same pseudo-rapidity (|η| < 0.5) window and same transverse

momentum ranges (0.2 < pT < 2.0 GeV/c). Figure 5.4 shows the mean, standard

deviation, skewness and kurtosis for net–charge, net–pion, net–proton and net–kaon

distributions as a function of centrality. It is observed that the effect of particle

species on the net–charge distributions are significant, and different species affect

the moments in a different manner. The mean of the net–charge distributions are

dominated by the effect of net–protons.

The mean of the net–pion distributions, on the other hand, are seen to decrease
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going from peripheral to central collisions, whereas the trend is opposite for other

three cases. The mean for net–pions shift to negative values for central collisions.

The trend for mean of net-kaons is similar to those of net–charges. The widths of

net–charge distributions are close to those of the net–pions. The widths of net–

kaons and net–protons are close to each other, but the values are smaller than those

of net–charges. The skewness of the net–charge distributions are close to those

of the net–pions, whereas net–kaon values are not so far. But skewness for net–

proton distributions are much larger compared to net–charges and has a significant

centrality dependence. This may be because of the difference in the number of

protons and anti-protons produced in different centrality classes at this energy. The

kurtosis of net–charge distributions are close to those of net–pions, and smaller than

those of the for net–kaons and net–protons.

As the products of moments (such as Sσ and κσ2) can directly be compared

to lattice calculations, we have studied their centrality dependence in Fig 5.4 as a

function of centrality for AuAu collisions at
√
sNN=39 GeV. It is observed that the

Sσ values do not show centrality dependence at this energy. Sσ for net–charges are

close to those of the net–kaons, whereas Sσ for net–pions are close to zero. These

values for net–protons are much larger compared to net–charges. The κσ2 values

for net–charges are close to those of the net-pions, and show strong centrality de-

pendence. For net–kaons and net–protons, these values remain close to unity. The

beam energy dependence of Sσ and κσ2 for top central AuAu collisions, obtained

using UrQMD, have been presented in Fig. 5.5, where the upper and lower panels

show the results for Sσ and κσ2, respectively. It is observed that Sσ for net–pions

are close to zero at all energies, whereas a decreasing trend with increase of energy
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is observed for all other cases. For net–charges, Sσ values get close to zero at higher

energies. The energy dependence of net–proton is quite prominent with much larger

Sσ values. The values of κσ2for net–charge are close to those of net–pions, and

show increasing trend with increase of beam energy. For net–proton and net–kaon

distributions, κσ2are close to unity at all energies.

Production of charged particles and net–charge distributions in proton-proton

and heavy-ion collisions are affected by resonance decays. This can be studied by

an event generator where one can track each of the particles in order to know its

origin and history of the decay. THERMINATOR-2 offers such possibility for AuAu

collisions at
√
sNN=200 GeV, where decays of resonances, such as, Ξ, ∆++, ρ, φ and

ω, and their anti-particles, can be turned on and off. Net–charge distributions have

been computed with resonance decays turned on and off, which allows us to study

the effects on the products of moments are studied. Figure 5.6 shows the results for

Sσ and κσ2 as a function of centrality. Sσ shows no centrality dependence, and the

values with resonance decay turned on are closer to zero compared to those without

the decay. Values of κσ2without resonance decay are higher compared to those with

the decay at all centralities. The reason for this could be the presence of double

charged baryons, like ∆++, which may affect the net–charge distributions, and en-

hance the higher order moments [64]. The net-charge distributions are sensitive to

the particle production mechanisms. HIJING treats the heavy-ion collisions as a su-

perposition of nucleon-nucleon collisions. It is well suited to study the effects of jets

and mini-jets on produced particles. UrQMD is a hadronic transport model includ-

ing strings. It has been used successfully to describe stopping power and hadronic
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Figure 5.6: The product of the moments, (a) Sσ and (b) κσ2, are plotted with
respect to average number of participating nucleons for two cases: with decay of all
resonances and without resonance decays using THERMINATOR-2 event genera-
tor [61].
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Figure 5.7: The collision energy dependence of the (a) M/σ2, (b) Sσ and (c) κσ2

from net–charge distributions for top central (0-5%) collisions. The results are shown
for HIJING, UrQMD, and THERMINATOR-2. The predictions from the HRG
model for the net-charge are plotted in all cases.
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re-scattering along with various hadronic resonances. The Lund string model is used

for the particle production both in the HIJING and UrQMD models. On the other

hand, THERMINATOR-2 gives a good description for the thermal model of par-

ticle production. The moments and their products for the net-charge distributions

are analyzed for the three event generators for AuAu collisions at
√
sNN=200 GeV.

Although the trends of all the distributions are similar, there are some differences in

terms of magnitudes. The M and σ increase from peripheral to central collisions for

all three models, whereas S and κ values decrease with increase in collision central-

ity. The values of M are lower in THERMINATOR-2 as compared to HIJING and

UrQMD, but the standard deviations are similar in all three cases. The centrality

dependence of S and κ for THERMINATOR-2 are also weaker as compared to the

other two cases. Combinations of the moments, such as M/σ2, Sσ and κσ2, have

been constructed for central (0-5% of cross section) AuAu collisions at
√
sNN=7.7

to 200 GeV using the three event generators. These are shown Fig. 5.7, along with

the predictions from the HRG model calculations. It is observed that M/σ2 and

Sσ decreases with increasing colliding energy in all cases. The results from the

three event generators are close together and HRG gives higher values. The values

of κσ2from HRG model is seen remain constant close to 2, whereas variations are

seen for the event generators. The consideration of double charged baryons in HRG

model is probably responsible for κσ2to be close to 2. HIJING and UrQMD values

are close to unity at low energy, after which these steadily increase as a function of

energy. THERMINATOR-2 is available only at
√
sNN = 200 GeV, and the value

is close to unity. At this energy, the models with thermal equilibrium (HRG and

THERMINATOR-2) have produced lower values of κσ2compared to HIJING and
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UrQMD.

5.3 Poisson Distribution

Figure 5.8: Diagrammatic representation of two limiting cases of Binomial distribu-
tion.

For the non-Critical baseline, the Poisson expectation is studied. Figure 5.8

shows the different limit of the three pdf, like Binomial, Poisson and Gaussian pdf.

Poisson distribution is a limiting case of Binomial, when probability of success p→ 0.

In the limit stopping parameter goes to infinity, r →∞, of Negative Binomial (NB)

distribution and probability of success, p, goes to zero such that mean of the distri-

bution constant, then NB distribution tend to Poisson Distribution. On the other

hand, in the limit of mean of the Poisson distribution goes to infinite, Poisson dis-

tribution tend to Gaussian distribution.
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In this approach, the positive and negative charged particles distributions are as-

sumed to be independent Poisson distribution where it has been assumed that

there is no dynamical correlation between the positive and negative charge particles.

Hence, the net-charge distribution is taken as a Skellam distribution (resultant of

the difference of two Poisson distributions) which serve as one of the baseline for

this analysis. For the Skellam distribution,

M = N+ −N− (5.2)

Sσ =
N+ −N−
N+ +N−

, (5.3)

σ2

M
=
N+ +N−
N+ −N−

, (5.4)

κσ2 = 1 (5.5)

Here N+ and N− are the means of the positive and negative charged particle dis-

tributions. The means of the positive and negative charged particle distributions

have been estimated for each centrality bin. The results of Poisson expectations

have been discussed in the result section in comparison with data and also discussed

in [63]. Any deviation of data from these expectation could be due to the presence

of dynamics of the system.

5.4 Negative Binomial Distribution expectation

Negative Binomial Distribution (NBD) can be expressed as,

NB(k; r, p) =

(
k + r − 1

k

)
pr(1− p)k (5.6)
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Where p is the probability of success and k is the failure before the rth success.

here r is also known as stopping parameter. As discussed above the limiting cases

NBD or Binomial distribution are the Poisson and Gaussian distribution. It is worth

noting that for the Gaussian distribution, the skewness and kurtosis are zero.

The NBD is valid in case of mean (µ) of the distribution is less than that of the

variance, σ2, µ < σ2. The probability of success is defined as p = µ
σ2 . The cumulants

of the NBD can be expressed in terms of the p and r as follows,

c1 ∼ µ =
r(1− p)

p
, (5.7)

c2 ∼ σ2 =
r(1− p)
p2

, (5.8)

c3 =
r(p− 1)(p− 2)

p3
, (5.9)

c4 =
−r(p− 1)(6− 6p+ p2)

p4
(5.10)

In this approach, the positive and negative charged particles distributions are

assumed to be independently NBD for a given centrality bin. Denoting cumulants

of the positive charged distribution are C+
n=1,2,3,4...., and similarly that for negatively

charged particles are C−n=1,2,3,4..... Then cumulants of the net-charged distribution

can be expressed as

Cn = C+
n + (−1)nC−n . (5.11)

For the estimation of the NBD expectations, bin width correction have also been

taken into account by calculating cumulants for the finer bin of the centrality. The
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products of moments are constructed using above expressions and also using expres-

sion given in 4.23. The results from the data of AuAu collisions for beam energy

scan in comparison with Poisson expectations also be discussed in results section in

detail.



Chapter 6
Analysis details

For the study of higher moments of the net-charge distributions various system sizes

as well as various beam energies have been analyzed at RHIC energies. It is neces-

sary in the event-by-event fluctuation analysis to suppress background fluctuation

originating from bad and outlier runs. For this a detailed has been performed. Be-

sides this extensive study on centrality determination, finite bin width effect, central

limit theorem, detector effect, efficiency correction for cumulants, and systematic as

well as statistical error estimation have been discussed in the following sections.

6.1 Data sets and Track selection

The RHIC beam energy scan data for Au+Au collisions at 39, 27, 19.6, 11.5 and,

7.7 GeV along with 200 and 62.4 GeV have been analyzed. For the smaller colliding

system, Cu+Cu collisions at 200 and 62.4 GeV and p+p collisions at 200 GeV have

also been studied. In the table 6.1, the data set used for the net-charge higher

moments analysis have been listed with the colliding system, beam energies, data

91
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production name, trigger name, and trigger Id. The minimum bias events have been

analyzed by using minimum bias trigger Id.

Table 6.1: The RHIC data set for various systems such as Au+Au, Cu+Cu and
p+p collisions at different beam energies. The STAR production, Trigger name and
Trigger Id are listed. The listed Trigger Id are minimum bias.

AuAu

√
sNN

(GeV)
Production Trigger

Name
Trigger Id

200 AuAu 200Production 2011 P11id 350043

62.4 AuAu62 Production P10id 270021,270011,
270001

39 AuAu39 Production P10ik 280001

27 AuAu27 Production 2011 P11id 360001

19.6 AuAu19 Production P11ik 340001,340011,
340021

11.5 AuAu11 Production P10ih 310014,310004

7.7 AuAu7 Production P10ih 290004,290001

CuCu
200 cuProductionMinBias P07ic 66007

62.4 cu62ProductionMinBias P07ic 76007,76001

pp 200 pp2pp Production2009 P10ic 7,250107

For the analysis of the above data sets, off-line cuts are used during analysis.

Along the longitudinal direction of the beam pipe, Vz, the events are selected within

±30 cm from the center of the TPC detector. This ensures uniform acceptance. In

addition, 2.0 cm radius in the transverse plane of the beam are used. The additional

|V pdVz−Vz| < 4 cm is used for AuAu collisions at 200, 62.4, and 39 GeV. All these

cuts are shown in Fig 6.1-6.3 for AuAu collisions at 39 GeV. The extensive run

quality assurance has been performed based on average distance of closest approach

(DCA), pT , η, and φ on the track variables and similarly on average reference

multiplicity (Refmult), number of primary tracks for event variables. The outlier

run rejection has been done based on appropriate σ of the above average variables.
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In Fig. 6.4, the average value of Refmult and φ for various Runs (Run index assigned

with Run numbers) are plotted for AuAu collisions for 200 GeV. The pile up events

have been removed by taking correlation between TPC tracks (Refmult) and number

of ToF matched tracks as shown in the Fig. 6.5 and 6.6. Here a line is drawn to

separate well correlated and piled up events in a data sample. Similar procedure

was followed for all energies. In Fig. 6.7, the correlation between positive charged

particles and negative charged particles with respective to Refmult2 are show after

removing pile-up events. The charged particles are bent due to the presence of 5

Table 6.2: Events cuts used for different data sets. The Vertex-z, Vertex-r, VpdVz
cuts based on Vertex-z, and total no. of events after using these cuts have been
listed for different systems and different colliding beam energies.

AuAu

√
sNN

(GeV)
|Vz|
(cm)

|Vr|
(cm)

|V pdV z − Vz|
(cm)

Events
(x106)

200 30 2 4 74.6

62.4 30 2 4 31.4

39 30 2 4 55.8

27 30 2 - 24.1

19.6 30 2 - 15.5

11.5 30 2 - 2.4

7.7 30 2 - 1.5

CuCu
200 30 2 - 5.2

62.4 30 2 - 7.6

pp 200 30 2 - 2

Tesla magnetic field in STAR TPC. Using Helix-algorithm, the path of the charged

particles are traced. Primary tracks, satisfying criteria for tracks with distance

of closest approach (DCA) less than 3 cm and at least 10 hits in TPC pad rows,

of an event are used for the analysis. In the TPC detector, tracks can have a

maximum of 45 hits. For this analysis, minimum 20 hits are required for each track
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to avoid track splitting effects. The tracks within 0.2 < pT < 2.0 GeV/c transverse

momentum range are analyzed. The pseudorapidity, η, in the range |η| < 0.5 is used

for the charged particles selections because of the uniform acceptance and counting

efficiency for the charged particles in this region. Figure 6.8 shows the uniform η

vs pT acceptance of the STAR TPC and the blue window represents acceptance

window used for the analysis. The full 2π azimuthal coverage of the TPC is used.

To remove the beam pipe contamination, primary tracks with DCA < 1 cm is used.

Table 6.3: For the charged particles selection, various physics and experimental cuts
have been listed.

Type Range

Pseudorapidity (η) -0.5 to 0.5

nFitPoints >20

DCA <1 cm

Track quality cut >0.52

nhitsdedx >10

In addition, extra cuts have also been used to remove spallation protons, orig-

inating due to particles hitting at beam pipe. These spallation protons have been

removed within pT range: 200< pT <400 MeV/c with additional experimental cuts

such as maximum hit points greater than 20 and global DCA less than 1 cm and

2σ on proton dE/dx (energy loss per unit length in TPC pad). The detail discus-

sion about the background protons due to beam pipe interaction can be found in

Ref. [72]. All the above quality cuts both on events and at track level have been

considered to reduce the background fluctuation which may contribute to net-charge

fluctuation.



95

VertexZ

60 40 20 0 20 40 60

E
v
e
n
ts

100

200

300

400

500

3
10×

AuAu 39 GeV

Figure 6.1: Vz distribution for AuAu 39
GeV.

 [cm]yV
2 1 0 1 2

 [
c
m

]
x

V

3

2

1

0

1

2

1

10

2
10

3
10

4
10

5
10

6
10

7
10AuAu 39 GeV

Figure 6.2: Vx vs Vy distribution for
AuAu 39 GeV

VpdVz Vz 

20 10 0 10 20

E
v
e
n
ts

1

10

210

310
AuAu 39 GeV

Figure 6.3: VpdVz - Vz distributions with analysis cut



96

Run index

1200 1250 1300 1350 1400 1450 1500 1550

〉
 R

e
fM

u
lt
 

〈

0

50

100

150

200

AuAu 200 GeV (Run 11)

Run index

1200 1300 1400 1500

〉 
φ 〈

6

8

10

12

14

16

18

AuAu 200 GeV (Run 11)
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Figure 6.5: Presence of pile-up events in
AuAu collisions at 200 GeV.

Figure 6.6: Presence of pile-up events in
AuAu collisions at 7.7 GeV.
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Figure 6.7: (Top panel) Positive charged particle multiplicity (N+) vs Refmult2
and (Bottom panel) Negative charged particle multiplicity (N−) vs Refmult2 after
removing pile-up events.
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6.2 Centrality Determination

Each event in A-A collisions is characterized by number of participant nucleons

(Npart), impact parameter of the collision (b) (as shown in Fig. 6.11), and/or number

of binary collisions (Ncoll). The average values of these variables over a collection of

events are related to the collisions geometry of the colliding system. In heavy-ion-

collisions, the collision geometry of the colliding system is also considered in terms

of the total number of the inclusive charged particles multiplicity (Nch) in a given

acceptance. The cross-section of collision geometry, in the heavy ion collision, is

expressed as the centrality class. The total inclusive charged particles multiplicity

distribution is shown in the Fig. 6.13. It illustrates the various collision geometry

of the A-A collisions in terms of Npart, b and Nch. Based on the collision geometry

or centrality class, events are coined as central, semi-central, semi-peripheral and

peripheral as in the Fig. 6.13.

In heavy-ion-collisions, it is not possible to measure Npart, b or Ncoll experimentally.

But the mapping can be done by Nch measured in each event with the average value

of Npart, b and Ncoll. This relates the experimentally measured observable with

phenomenological calculated quantities. Experimentally, dNevent/dNch is estimated

as illustrated in Fig. 6.13. By using Monte Carlo (MC) Glauber simulation [73] with

known system geometry and p-p inelastic cross-section (σNNinel ), < Npart >, < b >

and < Ncoll > can be estimated.

6.2.1 Procedure to obtain centrality definition

In the STAR experiment, the inclusive charged particles are measured within given

η window, like |η| < 1.0. Due to vertex reconstruction inefficiency at low multiplicity
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Figure 6.11: An illustration of the nucleus-nucleus collision. Here impact parameter
(b) and number of participants are shown.

events or peripheral events, MC simulation are done to produce dNMC
event/dNch map-

ping with true experimentally measured dNevent/dNch. This MC particle multiplicity

are simulated by convolution of Npart distribution form MC Glauber simulation and

a Negative Binomial Distribution (NBD),

NBD(n;µ, k) =
Γ(n+ k)

Γ(n+ 1)Γ(k)

(µ/k)n

(n/k + 1)n+k
. (6.1)

In Fig. 6.22, the correlation between Ncoll and Npart are plotted from MC Glauber

simulation for AuAu collisions at
√
sNN = 200 GeV. Similarly, for other BES ener-

gies, the MC simulations have been done. The MC multiplicity distribution can be

reproduced by iterating NBD parameters. The relevant plots have been discussed

in the following sections. Having simulated dNMC
event/dNch, it is mapped with MC

Glauber variables to get the mean values. The centrality class or event classification

can be performed based on this MC simulated multiplicity and are defined as the

fraction of the total integral of the multiplicity distribution. This can be understood
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Figure 6.12: Number of binary collisions (Ncoll) vs number of the participant nucle-
ons are plotted for AuAu collisions at 200 GeV from MC Glauber simulation.

as follows

∫ n5

∞
dNMC

event

dNch
dNch∫ 0

∞
dNMC

event

dNch
dNch

= 0.05 (6.2)

Here n5 represents the bin number at which 5% of total integral occurred. So, any

event lying above the multiplicity with number n5 is considered top 0-5% central

events. Experimentally, using these cuts centrality selection is performed in heavy-

ion-collisions. In this analysis, similar methods have been undertaken and list of

such centrality cuts have been tabulated and discussed in the following sections.

6.2.2 Auto-correlation effect and corrections technique

The traditional centrality selection in the STAR experiment is done by the uncor-

rected inclusive charged particle multiplicity within |η| < 0.5. Unfortunately, STAR
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Figure 6.13: An illustration of the total inclusive charged particles multiplicity and
number of participant (Npart) and impact parameter (b) of the AuAu collisions [71].

has no other good detector system for the centrality selection. In the net-charge

higher moments analysis, all the charged particles have been selected in same η-

window (|η| <0.5). Because of same charged particles used in both the analysis

and also in centrality selection, auto-correlation effect is expected to play significant

role. And, this effect is observed in higher moments analysis for net-charge distri-

bution. To reduce this effect, another centrality windows within 0.5 < |η| < 1.0

is introduced. In Fig 6.15, it is shown that η vs pT correlation indicating differ-

ent η-windows for centrality selection and analysis region. Traditionally, the old

centrality selection (with |η| <0.5 ) is termed as Reference Multiplicity or shortly

“RefMult”, whereas this new centrality definition (0.5 < |η| < 1.0) is coined as

Reference Multiplicity-2 or shortly “RefMult2”. The net-charge distributions for

AuAu collisions at 7.7 GeV for three centralities, 0-5%, 30-40%, and 60-70%, are
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Figure 6.14: The net-charge distribution for AuAu collisions at 7.7 GeV for three
centralities.

shown in Fig. 6.14. These centralities are estimated from “RefMult2” centrality

definition. Figures. 6.16 show the higher moments of the net-charge distribution

and their products for AuAu Collisions at 7.7 GeV colliding energy. Due to auto-

correlation effect, the centrality selection procedure for the events is improper and it

decreases the moments values. Therefore, by choosing suitable centrality definition,

this effect can be reduced. So, RefMult2 definition is used through out this analysis.

To validate this new centrality definition, MC Glauber simulation has been per-

formed for all energies. In Figs. 6.17, the MC simulated as well as measured mul-

tiplicity distributions are plotted and the ratio of the data to MC is shown. At

peripheral collisions, the ratio of data to MC shows less than unity that is due to

trigger inefficiency for low multiplicity events. Based on the MC simulated multiplic-

ity, centrality definition is performed. Figure 6.18 shows the RefMult2 distributions

from the data and that from MC simulation for the AuAu collisions at
√
sNN= 7.7
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for AuAu 39 GeV

Centrality
System

√
sNN(GeV) 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

AuAu

200
Refmult2 >453 >383 >268 >181 >117 >71 >40 >20 >9
< Npart > 349.67 302.22 237.26 169.02 116.73 76.93 47.21 27.43 14.96

62.4
RefMult2 >334 >279 >194 >131 >84 >51 >29 >15 >7
< Npart > 344.4 296.71 232.08 164.59 113.49 75.08 46.26 26.56 13.78

39
RefMult2 >307 >257 >179 >121 >78 >47 >27 >14 >7
< Npart > 341.76 291.95 227.72 160.87 110.54 72.86 45.25 26.23 17.96

27
RefMult2 >284 >237 >164 >111 >71 >43 >25 >13 >6
< Npart > 340.96 291.78 227.42 167.17 110.87 72.93 45.43 26.06 13.43

19.6
RefMult2 >258 >215 >149 >100 >65 >40 >22 >12 >5
< Npart > 340.67 293.93 232.41 167.02 117.86 79.93 51.21 31.43 17.96

11.5
RefMult2 >206 >172 >118 >80 >52 >32 >18 >9 >4
< Npart > 338.42 288.74 224.29 158.38 109.30 71.92 44.32 25.59 14.044

7.7
RefMult2 >165 >137 >95 >64 >41 >25 >14 >7 >3
< Npart > 337.36 290.41 226.64 160.94 109.02 71.36 44.56 25.62 13.85

CuCu 200
RefMult2 >138 >120 >83 >56 >36 >22 >13
< Npart > 106.5 93.2 74.4 53.9 38.1 26.1 17.2

62.4
RefMult2 >97 >84 >58 >39 >25 >16 >10
< Npart > 103.2 90.1 71.8 52.1 36.8 25.3 16.7

Table 6.4: Centrality definition for AuAu and CuCu collisions for RHIC energies.
The RefMult2 cuts and < Npart > have been listed for different centrality.
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Figure 6.16: Higher moments of the net-charge distribution and their products for
Au+Au collisions at 7.7 GeV center of mass energy using Refmult and Refmult2
centrality definition.
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to 200 GeV for 0-5% and 30-40% centrality. In Table. 6.4, the RefMult2 cuts and

corresponding < Npart > have been listed for different centrality bins.

Figure 6.19: Various η-windows for the Refmult2 definition to check centrality res-
olution.

Figure 6.20: Refmult2 distribution at various η-windows for AuAu collisions at 200
and 7.7 GeV center of mass energy.

6.2.3 Centrality resolution effect

The choice of centrality definition in the heavy-ion-collisions plays a vital role in the

physics analysis. Using RefMult2 centrality definition, to check the effect of the cen-
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Figure 6.21: κσ2and Sσ for AuAu colli-
sions at 200 GeV for different η-windows.

Figure 6.22: κσ2 and Sσ for AuAu colli-
sions at 7.7 GeV for different η-windows.
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trality resolution—the multiplicity distributions are varied by changing η-windows

as shown in Fig. 6.19. Different η-windows have been studied like, 0.5 < |η| < 0.9,

0.5 < |η| < 1.0 (default), 0.5 < |η| < 1.1 and 0.5 < |η| < 1.2 as shown in the

Fig. 6.19. The Refmult2 distributions for different η-windows are shown in the

Figs. 6.20 for AuAu collisions at 200 and 7.7 GeV. By increasing the size of the

η-window, the multiplicity distribution increases. For all four cases the higher mo-

ments for the net-charge distribution within |η| < 0.5 have been studied. In Fig. 6.21

and 6.22 show the κσ2 and Sσ for different η-windows. It is observed that with

increasing centrality η-windows the value of the product of moments gets saturated

above the size of η-windows of RefMult2. So, it is safe to use centrality definition

using RefMult2 ( 0.5 < |η| <1.0) within ambit of the STAR detector system for

centrality determination.

6.3 Centrality Bin Width Correction

A given centrality class is a collection of events having a range of impact parameters

or 〈Npart〉, thus comprising of events with different charged particle multiplicities.

This results in additional fluctuations in the number of produced particles within

each centrality class. Below we will discuss the effect of finite bin width of a given

centrality class on the moments of distributions and prescribe a method to correct

for this effect. Centrality classes were chosen using three different centrality bin

widths, viz., 2.5%, 5% and 10% of the cross section. From Fig. 6.23, it is observed

that M and σ of the net–charge distributions are close to each other for all three

centrality classes, whereas deviations are observed for S and κ, and their products
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(Sσ, κσ2). This deviation is the result of choosing centrality class with a large bin.

The effect due to the finite centrality bin can be reduced by choosing smaller

bins. In some cases because of practical reasons such as resolution of centrality

determination, statistics of available events, it is not possible to choose fine bins.

In this case, a centrality bin width weighting method can be used to minimize the

effect. For this, net–charge distributions are constructed for finer bins in centrality

within a centrality class. For moments of the distributions are obtained for each

finer bin and weighted to get the final moments, according to:

X =

∑
i niXi∑
i ni

, (6.3)

where X represents a given moment, the index i runs over each fine centrality bin, ni

is the number of events in the ith bin, and
∑

i ni is the total number of events in the

given centrality class. Figure 6.24 shows the moments of net–charge distributions in

each centrality class with appropriate weighting using centrality bin width method.

After this correction, no centrality bin width dependence is observed in the three

centrality classes. Hence the correction method does an appropriate job in correcting

the finite centrality bin width effect.

6.4 Application of central limit theorem

As discussed in Section. 4.2.3-4, a Binomial and Poisson distribution approach Gaus-

sian distribution under certain limits. The Gaussian distribution is closely related

with the Central Limit Theorem (CLT), which states that,
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Figure 6.23: Upper panel: without CBW
corrected for M,σ, S and κ Lower panel:
that of κσ2and Sσ for AuAu collisions at
27 GeV center of mass energy.

Figure 6.24: Upper panel: with CBW cor-
rected for M,σ, S and κ Lower panel: that
of κσ2and Sσ for AuAu collisions at 27
GeV center of mass energy.
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” The sum of the independent and identically distributed (i.i.d) random variables

follows a Normal/Gaussian distribution as the number of trials increases. ”

Here the samples of random variables are said to be i.i.d when each random

variable is drawn from same parent probability distribution and all the random

variables are mutually independent.

Mathematically, the CLT can be understood as follows,

if Xi, i = 1, 2, 3, ..., n, are i.i.d random variables having probability distribution

fi(x) with mean Mi and a variance σ2. The random variable Y =
∑

iXi

n
, or average

of Xi of each distribution fi(x) tends to Normal/Gaussian distribution with mean

(E[Y ] =
∑

iMi

n
) and variance (V ar[Y ] =

∑
i σ

2
i

n2 ), as n→∞.

Therefore, using CLT, one can write down the form of mean and standard devi-

ation, assuming Mi and σi same for all Xi as follows

Mi = n M(Y ), (6.4)

σi =
√
n σ(Y ). (6.5)

Similarly, for skewness and kurtosis [74], one can write down

Si = 1/
√
n S(Y ), (6.6)

κi = 1/n κ(Y ). (6.7)

The centrality evolution of the higher moments can be understood better by

invoking the CLT, which gives the dependence of the moments on the number of

participating nucleons. In this case, one can consider the number of sample size
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n as average number of participating nucleons, < Npart >, in a centrality class.

And each Npart can be considered by the source of independent emission of particles

production. As in this case, there is no idea about the parent distribution. The

moments can be written as follows

M ∝ < Npart >,

σ ∝
√
< Npart >,

S ∝ 1√
< Npart >

,

and κ ∝ 1

< Npart >
. (6.8)

Here 〈Npart〉 can be treated as the proxy for the volume of the system size. As going

from peripheral to central, volume of the system increases. These moments show the

volume dependence and these dependence can be cancelled by suitably multiplying

these moments.

The centrality dependence of higher moments of the net-charge distribution are

fitted with CLT expression as in Equations. 6.8. Fig. 6.25-6.27 show the CLT fit

for the four moments. The χ2/ndf of each CLT fitting for M , σ, S and κ is plotted

for seven energies in Fig 6.28. Here for a given energy, M , σ, S and κ are fitted

with respective CLT form as given in the above expression with constant of propor-

tionally as a free parameter. It is due to the lack of information about the constant

of proportionality in experiment. The CLT fitting give the idea that the higher

moments of the distribution tend to the value that of the Gaussian distribution as

the system possesses large and large independent emission sources.
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Figure 6.25: Mean (M) vs 〈Npart〉. The red line represents the fitted CLT expecta-
tion.

6.5 Error estimation

For the higher moments of the net-charge distributions, statistical and systematical

errors have been estimated. The statistical error estimations have been performed in

several ways and discussed in Section 6.5.1. The uncertainties due to instrumental

cause are discussed in Section 6.5.2. In addition to this, detector efficiency also

gives rise to an additional uncertainty in the higher moments of the net-charge

distribution. This has been elaborated in Section 6.6.

6.5.1 Statistical Error

The higher moments of the net-charge distribution analysis needs large statistics to

minimize the statistical fluctuation. So, for the limited statistics, this analysis needs

very careful measurement of the statistical uncertainty. For this analysis four ways,

of calculating the statistical error have been employed — such as, 5 Sub-group [A.1],
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Figure 6.26: Standard Deviation (σ) and Skewness (S) vs 〈Npart〉. The red line
represents the fitted CLT expectation.
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Figure 6.27: Kurtosis (κ) vs 〈Npart〉. The red line represents the fitted CLT expec-
tation.

 (GeV)
NN

s√
5 6 10 20 30 100 200

/n
d
f

2 χ

0

0.5

1

1.5

2 M σ S κ

NetCharge
Au+Au

Figure 6.28: χ2/ndf for each moment as a function of
√
sNN



117

Analytic [A.2], Bootstrap [A.3] and Delta theorem [75] methods. In fig. 6.29, the

statistical errors for above four approaches have been shown for κσ2and Sσ. It is

observed that 5-subgroup method gives very random values of the error irrespective

of the statistics of the centrality class. On the other hand, analytical method also

overestimate the statistical error. The Bootstrap and Delta theorem method are

observed to be consistent to each other. The Delta theorem method have been used

for the estimation of the statistical error through out this analysis.

〉 
part
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0 100 200 300 400
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NetCharge

Figure 6.29: Different approaches of the statistical error estimation and their com-
parison, for AuAu collisions at 39 GeV, for κσ2and Sσ.

6.5.2 Systematic Error

Systematic uncertainty has been estimated based on the STAR TPC detector sys-

tem. The charged particles are measured for this analysis by the STAR TPC using

suitable track quality cuts on the number of hits point (nFitpoints), distance of
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closest approach (DCA), and the number of hits for the dE/dx measurement (nhits-

dedx). These track quality cuts play an important role in counting the number of

the positive and negative charged particles for the net-charge distribution. Signifi-

cant change in default cuts for this analysis makes noticeable changes in final results

of the net-charge distribution. So in order to make the results unbiased on choosing

track quality cuts for the systematic error estimation, above cuts are chosen such

that the mean of net-charge of the distribution ought to have close values to that

of the data. The systematic variation for the efficiency uncorrected higher moments

and their products are discussed below. The efficiency correction procedure is dis-

cussed in next Section 6.6.2

For the systematic error estimation, following track quality cuts have been studied

for the efficiency uncorrected results.

• nFitpoints: 18, 19, 20(default), 21, 22

• DCA: 0.8, 0.9, 1.0 (default), 1.1, 1.2

• nhitsdedx: 8, 9, 10 (default), 11, 12

So, by varying above experimental cuts, the systematic error has been estimated

and the formula used for these estimation is as follows

RMS =

√
1

n

∑
i

Yi − YSt.Cut
YSt.Cut

, Sys.Err = YSt.Cut

√∑
RMS2. (6.9)

Where , Yi : moments values from different cuts and YSt.Cut : moments values from

Standard (default) cut .

Figure. 6.30 shows all the efficiency uncorrected moments plots for varying DCA

about its default mean value of the net-charge distribution for AuAu collisions at
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39 GeV. Here the mean and standard deviation are observed to have negligible

dependence ( about 1% variation) on the variation of DCA about its default mean

values of the net-charge distribution. The skewness and kurtosis do show a small

dependence on the DCA cut. Similar studies have been done for all experimental

cuts (as listed in the above bullets) and for all energies. The systematic uncertainties

are found to be 4%, 1%, 16% and 9% on average over all energies and centrality for

M , σ, S and κ, respectively. The DCA variation shows 20% and 10% variation in

the Sσ and κσ2, respectively.

In case of efficiency corrected results, additional systematic errors have also been

included. Those are followings.

1. Effect of track quality cuts on efficiency estimation

In this case, three types of track cuts have been selected that give optimum

variation of mean of the net-charge values. Those cases are followings.

• Case-1: nFitPoints>23 and DCA > 1.0 cm

• Case-2: nFitPoints>20 and DCA > 1.3 cm

• Case-3: nFitPoints>18 and DCA > 1.0 cm

• Default: nFitPoints>20 and DCA > 1.0 cm

The systematic variation for the above cases are shown in Fig. 6.31. Similarly,

for other energies, these are also done. It is observed that up-to 50% variation

is observed in both the moments products.

2. Effect of 5% efficiency on higher moments of the net-charge distribution
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Figure 6.30: Efficiency uncorrected mean, standard deviation, skewness, kurtosis
and their products have been plotted as a function of 〈Npart〉by varying DCA.
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Figure 6.31: The Efficiency corrected mean, standard deviation, skewness, kurtosis
and their products have been plotted as a function of 〈Npart〉by track quality cuts for
the efficiency estimation. Here Case-1: nFitPoints>23 and DCA > 1.0 cm, Case-2:
nFitPoints>20 and DCA > 1.3 cm, Case-3: nFitPoints>18 and DCA > 1.0 cm, and
Default: nFitPoints>20 and DCA > 1.0 cm.
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The efficiency, estimated from the embedding sample, is not perfect. It is

observed that there is 5% variation in efficiency due to contamination. This

variation are included in systematic error in higher moments of the net-charge

distribution. In this case, the efficiency for each centrality is varied ±5% of

the default values.

6.6 Detector effect

Every instrument has finite efficiency to perform a certain task. In STAR exper-

iment, all detectors and trigger system have finite efficiency for tracking particles

and to identify the events respectively. The higher moments of the net-charge dis-

tributions are affected by these finte efficiencies.

To understand the event-by-event charged particles detection efficiency, one has

to know the sources of the inefficiency. There are several controbuting factors for

example, tracking inefficiency, inefficiency due to acceptance, vertex reconstruction

inefficiency, momentum resolution inefficiency etc. in heavy ion collisions. These

inefficiencies are very difficult to correct in an event-by-event analysis. In addition

to this, efficiencies — due to different sources— are not additive. The expressions

of the higher order cumulant ( combination of cumulants give various moments of

the distributions) are very sensitive to the higher power of fluctuation like efficiency

fluctuation. In Section 6.6.1, the effect due to efficiency on the net-charge higher

moments have been discussed in details.
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6.6.1 Geant simulation study

As we discussed in previous section, to take into account the difference due to

detector effects on higher moments both HIJING+GEANT and HIJING events have

been studied. In this case, HIJING+GEANT events have been simulated in exactly

similar way as the data of AuAu collisions at 19.6 GeV. Similar track quality cuts

mentioned in Table. 6.3 and event cuts, like Vertex-r and Vertex-z, have been used

to make data like events.

In Fig. 6.32, the positive and negative charged particles distributions are pre-

sented for 0-5%, 30-40%, and 60-70% centrality bins and in Fig. 6.34 the net-charge

distributions have been presented for three centrality bins for HIJING and HI-

JING+GEANT. The mean and width of the distribution changed due to efficiency

effect. The M , σ, S, and κ, for AuAu collisions at 19.6 GeV for HIJING+GEANT

and HIJING, are shown in Fig. 6.34 and that of σ2

M
, Sσ, and κσ2 are shown in

Fig. 6.35. It is observed that due to detector/efficiency effect M and σ decrease,

whereas S and κ and the values of σ2

M
, Sσ, and κσ2 increase for all centralities.

6.6.2 Efficiency correction for cumulants

Let us consider the net-charge probability distribution, P (N+, N−), of positively

charged particles, N+, and Negatively charged particles, N−, of ideal detector (effi-

ciency 100%). Assuming binomial probability distribution for the efficiency in the

detector,

p(n+, n−) =
∑

N+=n−

∑
N−=n−

B(n+|N+, ε+)B(n−|N−, ε−)P (N+, N−). (6.10)
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Figure 6.32: The positive and negative charged multiplicity distribution, for 0-5%,
30-40%, 60-70%, for AuAu collisions at 19.6 GeV for HIJING+GEANT and HIJING.

Figure 6.33: The net-charge distribution, for 0-5%, 30-40%, 60-70%, for AuAu col-
lisions at 19.6 GeV for HIJING+GEANT and HIJING.
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Figure 6.34: The M , σ, S, and κ for AuAu collisions at 19.6 GeV for HI-
JING+GEANT and HIJING. The charged particles are selected within |η| < 0.5
and 0.2 < pT < 2.0 GeV/c.
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Figure 6.35: The σ2

M
, Sσ, and κσ2 for AuAu collisions at 19.6 GeV for HI-

JING+GEANT and HIJING. The charged particles are selected within |η| < 0.5
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Here p(n+, n−) is the measured net-charge probability distribution with positive

and negative charged particles efficiency ε+ and ε+. Then the moment generating

function can be defined as

m(z) =
∑

N+=n−

∑
N−=n−

P (N+, N−)[1− (1− z)ε+]N+ [1− (1− z−1)ε−]N− . (6.11)

The cumulant generating function can be defined as

g(t) = ln[l(et)] =
∞∑
k=1

tk

k!
. (6.12)

We can construct different cumulants both for true and measured, using following

expression

cn =
dng(t)

dtn
|t=0, Cn =

dnG(t)

dtn
|t=0. (6.13)

Here, cn and Cn are the nth order measured and true cumulants and G(t) is the

cumulant generating function at ε− = ε+= 1. In the net-charge analysis, for simpli-

fication one can assume ε− = ε+ =ε. Using above expressions, it can be derived for
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the efficiency correction of cumulant,

C1 = c1/ε, (6.14)

C2 = (c2 − n(1− ε))/ε2, (6.15)

C3 = (c3 − c1(1− ε2)− 3(1− ε)(f02 − f02 − nc1))/ε3, (6.16)

C4 = (c4 − nε2(1− ε)− 3n2(1− ε)2 − 6ε(1− ε) (6.17)

×(f20 + f02) + 12c1(1− ε)(f20 − f02)− (1− ε2)(c2 − 3c1
2)

−6n(1− ε)(c1
2 − c2)− 6(1− ε)(f03 − f12 + f02 + f20 − f21 + f30))/ε4.

Here n is the measured average total charged particles. fij is the factorial moment

of the measured distribution. Using Eq. 6.10, it can be derived that,

fij = εi+ε
j
−Fij. (6.18)

Where Fij is the true factorial moments. The factorial moments factories the effi-

ciency as expressed above. The detail derivation can be found in Ref. [76]. In the

next section, the procedure of obtaining efficiency for positive and negative charged

particles are discussed in details.

6.6.3 Efficiency estimation

In the net-charge analysis, average efficiency, ε = ε++ε−
2

, is taken for the cumulant

correction. In the STAR experiment, efficiencies are estimated by embedding Monte

Carlo (MC) tracks in the real events. The reconstruction algorithm is used to

get back the number of embedded MC tracks in the real events. The efficiency is
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estimated based on the real embedded MC tracks and reconstructed tracks of an

event. In the embedding procedure, identified particles, like p, p̄, π+, π−, K+ and

K−, etc., are used. In Fig. 6.36, the pT dependance of efficiency for the π+ for 0-5%

centrality is shown. These efficiencies are estimated based on the net-charge analysis

track and vertex cuts (as given in table 7.2 and 6.1). To estimate the efficiency for
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Figure 6.36: The pT dependance of efficiency, for 0-5% centrality, of Au+Au colli-
sions at 7.7 and 39 GeV for π+ are plotted.

the positive charged particles, it is assumed that total positive charged particles are

collection of p,K+ and π+. Similarly for the efficiency of negative charged particles,

it is assumed that total negative charge particles are collection of p̄, K− and π−.

The weighting is done as following expression

wp + wK+ + wπ+ = 1. (6.19)

Where wx is the weight of particle species x. The values of wp, wK+ and wπ+ are

estimated from the particle ratio as follows

p

π+
= r,

K+

π+
= s. (6.20)
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These particles ratios are taken from the respective particle pT spectra. Using

Eq. 6.19 and 6.20, one can find

wπ+ =
1

r + s+ 1
, (6.21)

wp = rwπ+ , (6.22)

wK+ = swπ+ (6.23)

and similarly for anti-particles. Expression for positive and negative charge particle

efficiency with above weight is expressed as follows,

ε+ = wpεp + wK+εK+ + wπ+επ+ , (6.24)

ε− = wp̄εp̄ + wK−εK− + wπ−επ− . (6.25)

Where wx and εx are the weight and efficiency of particles species x. wx is estimated

from the particle ratio for different charged particles like, p
π+ ,

p̄
π− ,

K+

π+ ,
K−

π− , and εx is

estimated by integrated pT dependance efficiency using expression

εx =

∫
ε′x(pT )f(pT )pTdpT∫

f(pT )pTdpT
. (6.26)

Here ε′x is the efficiency obtained from embedding for all particles species and f(pT )

is the function obtained by fitting the transverse momentum spectra for all energies

and centralities. In case of π+, for AuAu collision at 7.7 and 39 GeV at 0-5%

centrality, pT dependance plots have been shown in Fig 6.36. The systematic error

by varying ±5% of the average efficiency is also included. The efficiency for positive

(ε+) and negative (ε−) charged particles and the average efficiency (ε) listed in
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√
sNN(GeV) 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80%

Positive charged particles ( ε+)
62.4 0.62 0.63 0.64 0.65 0.66 0.67 0.69 0.68 0.70
39 0.62 0.64 0.65 0.66 0.67 0.67 0.68 0.70 0.71
27 0.63 0.65 0.65 0.66 0.67 0.68 0.68 0.69 0.70
19.6 0.63 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.71
11.5 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72
7.7 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.72

Negative charged particles ( ε−)
62.4 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72
39 0.64 0.65 0.66 0.67 0.68 0.69 0.69 0.70 0.72
27 0.65 0.66 0.66 0.67 0.67 0.68 0.69 0.69 0.71
19.6 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.72
11.5 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.72 0.73
7.7 0.66 0.67 0.68 0.69 0.71 0.70 0.72 0.72 0.73

Average ( ε = ( ε+ + ε−)/2)
62.4 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.69 0.71
39 0.63 0.64 0.65 0.66 0.66 0.68 0.68 0.70 0.71
27 0.64 0.65 0.65 0.67 0.67 0.68 0.68 0.69 0.70
19.6 0.65 0.66 0.67 0.68 0.69 0.70 0.70 0.71 0.72
11.5 0.66 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.72
7.7 0.66 0.67 0.67 0.68 0.69 0.70 0.71 0.72 0.73

Table 6.5: Efficiencies for positive and negative particle for different centralities.
The average efficiency (ε) is also listed below for different energies and centralities.

Table. 6.5.

6.6.4 Validation of efficiency correction method

To validate the efficiency correction method as discussed in Subsection 6.6.2, we

assume our data is of 100% efficienct. In this case, randomly throwing particles in

each centrality, we artificially introduce 80% Binomial efficiency in each centrality.

Figure 6.37 shows event-by-event efficiency distribution for 0-5% centrality. As it is

observed that mean of the efficiency distribution is 80%. Using this efficiency dis-

tribution, the positive (N+) and negative (N−) charged distributions are obtained

as shown in Fig. 6.38. Due to 80% efficiency, the positive and negative charged
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Figure 6.37: The Binomial efficiency distribution introduced in each centrality for
both the positive (N+) and negative (N−) charged distributions for AuAu 19.6 GeV.

Figure 6.38: The positive (left panel) and negative (right panel) charged distribution
after using 80% Binomial efficiency for AuAu 19.6 GeV at 0-5% centrality.
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Figure 6.39: (Top panel) Various moments as a function of 〈Npart〉. (Bottom panel)
The products of moments as a function of 〈Npart〉. Real data which is assumed to
be 100%, data with artificially introduced 80% efficiency using and reproduced data
after using efficiency correction method.
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distribution shifts to the left. Here it can be observed that efficiency fluctuates

event-by-event, whereas the mean of the Binomial distribution implies the efficiency

of that centrality. So, while dealing with efficiency correction in the higher order

cumulants like, c3, c4, etc., proper weighting should be done to avoid the efficiency

fluctuation within a centrality window. It is also observed that efficiency is very

much dependent on multiplicity of the event. As we see in Table. 6.5, the efficiency

increases with decrease in centrality, since multiplicity decreases going from central

to peripheral events. It is mainly due to tracking inefficiency in high multiplicity

events.

The efficiency correction (preferring to coin multiplicity bin-by-bin efficiency cor-

rection) should be done before centrality bin width correction, with proper efficiency,

to get cumulants in a given centrality. Figure 6.39 shows various moments and their

products estimated for three cases, 1) the true higher moments of the data assuming

100% (red circle), 2) 80% Binomial efficiency introduced in the data (black circle)

and 3) reproduced data using efficiency correction method using expression 6.14

(blue box). It is observed that using above correction method and efficiency correc-

tion expression, the true higher moments can be reproduced.

It is worthwhile to note that this correction procedure is able to reproduce true

moments if the exact efficiency is known for each multiplicity. But in the STAR

experiment, the efficiency is estimated from embedding for each centrality. So, the

exact efficiency for each multiplicity bin is difficult to estimate. It is also good to

have efficiency for each centrality multiplicity bin which can give more accurate re-

sults.
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While doing efficiency correction for higher order moments, the expressions for

the 5th, 6th...8th moments contain large number of correction terms. This creates

many problem while coding for the estimation for the statistical error by Delta

Theorem. To avoid these complexity, Bootstrap method A.3 is used.



Chapter 7
Results of higher moments analysis

In this chapter, we present the final results of the analysis of the higher moments of

the net-charge distributions.

7.1 Net-charge multiplicity distributions

In the heavy-ion-collisions, initially the system is in a purely baryon dominated

positively charged (dominated by protons) condition. Therefore the system is ex-

pected to be of positively charged dominated in the final state. In addition to this,

the event-by-event net-charge is estimated in a finite acceptance (both in pseudo-

rapidity and transverse momentum range), so it is always expected to be positive

mean of the net-charge distribution in a given ensemble of the events. The event-

by-event net-charge (N+ − N−) distribution within |η| < 0.5 and 0.2 < pT < 2.0

GeV/c, are shown in Fig. 7.1. These distributions are efficiency and centrality bin

width uncorrected net-charge distributions. It is observed that the width of the dis-

tribution increases with the increase of centrality. These net-charge distributions are

136
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plotted with the Skellam distribution assuming both positive and negative charged

particle distributions to be independently Poisson distributed. The expression of

the Skellam distribution is given by

f(k;µ1, µ2) = e−(µ1+µ2)(
µ1

µ2

)k/2I|k|(2
√
µ1µ2) (7.1)

Here µ1 and µ2 are the mean of the positive and negative charged particles respec-

tively. I|k|(z) is the modified Bessel function of the first kind. The net-charge distri-

bution has been plotted with respective Skellam distribution for AuAu collisions for

0-5% to 60-70% centralities, taking input as the mean of the positive and negative

charge distribution for respective centrality. It shows that the Sekllam distribution

qualitatively follows the net-charge distributions. Figure 7.2 shows the net–charge

distributions for top central (0-5%), semi-central (30-40%) and peripheral (60-70%)

collisions for
√
sNN= 7.7 to 200 GeV. It has been observed that the mean of the

distributions is close to zero for high energy collisions and shifts towards positive

values for lower energies. This is expected because of dominance of particles on

anti-particles at low energies at mid-rapidity. The distributions are seen to be wider

for higher energy collisions compared to those of the lower energies. The Skellam

distribution comparisons with the different distribution shows that it closely follows

the peripheral as compared to central bins (0-5%).

7.2 System size dependence

The higher moments of the net-charge distribution have been estimated for different

collision geometries, like CuCu, AuAu and pp collisions. With the increase of system
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Figure 7.1: The net-charge distribution, for AuAu collisions at 200 GeV within |η|
< 0.5 and 0.2 < pT < 2.0 GeV/c, drawn with the Skellam distribution for different
centralities.
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Figure 7.2: The net-charge distribution, for AuAu collisions at 7.7 to 200 GeV within
|η| < 0.5 and 0.2 < pT < 2.0 GeV/c, drawn with the Skellam distribution for three
different centralities (0-5%, 30-40%, 60-70%).
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size, number of participant, Npart, for the collision increases and hence more energy

density is produced during collision for a given colliding energy. So, it is expected

that the large number of particle are produced for heavy ion collisions. On the

other hand, according to CLT, with increase in Npart, the higher moments of the

net-charge distribution tends to a Gaussian limit and with increase in centrality, M

and σ show increasing trend whereas S and κ show decreasing trend. This behavior

can be studied using different colliding geometry.

In Fig. 7.3, the centrality dependency of various moments and their products, like

κσ2 and Sσ , are shown for CuCu and AuAu collisions at 200 and 62.4 GeV and pp

collisions for 200 GeV. M and σ increase as increasing centrality, however the trend

of S and κ decrease as expected by CLT. The Sσ for CuCu collisions show relatively

large values as compared to that of AuAu collisions and in case of pp collisions it is

in between the CuCu and AuAu most peripheral collisions. The values of κσ2 show

relatively large as compared with that of large system size. It is observed that

the results of central events of CuCu collisions akin with that of AuAu collisions,

whereas pp collisions close to peripheral collisions of AuAu and CuCu collisions.

7.3 Effect of phase space and experimental cuts

7.3.1 Effect of pseudorapidity (η) window

The total charge is conserved at full phase space in the heavy ion collisions. For

a finite acceptance, the conserved charge varies event-by-event and hence gives rise

event-by-event fluctuation. The charged particle multiplicity are varied by choosing

different η windows. For the small η-gap, fewer charged particles are accessed, and
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with increase in η-gap, more and more charged particles are accessed. To understand

the evolution of the various moments of the net-charge distribution with η-gap,

different η windows are chosen, -0.1 to 0.1, -0.2 to 0.2, -0.3 to 0.3, -0.4 to 0.4 and

-0.5 to 0.5, for given transverse momentum region 0.2 to 2.0 GeV/c. In Fig. 7.4, M

and σ are plotted for different η-gap. The M of the net-charge distribution increases

with increasing η-gap and this increasing trend is observed both in the central (0-

5%) and peripheral (60-70%) events. Similar increasing trend is also observed in σ

for both central and peripheral events. In Fig. 7.5, the S and κ are plotted, for most

central and peripheral events, as a function of different η-window. With increase in

η-window, the skewness of the net-charge distribution increases both for central and

peripheral events, in the contrary kurtosis decreases with increase in the η-window.

The κσ2 and Sσ increases with increase in η-gap for central to peripheral events

for all seven energies as shown in Fig 7.6. It is observed that due to increase in

η-window, number of charged particles are increased and hence the mean of the

net-charge distribution and its width also increase. With increase in multiplicity,

the tail of the net-charge distribution gets skewed towards positive side. On the

other hand the peakedness of the distribution decreases.

7.3.2 Effect of transverse momentum (pT )

Large pT windows allow to access more inclusive charged particles in a given η win-

dow and with inclusion of high pT , more jet particles may be included which gives

rise to additional fluctuation. In addition, long range fluctuation is expected to be

originated from the low transverse momentum particles according to the uncertainty

principle. The effect of different pT windows have been studied. In Fig. 7.7, upper
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pT (pTmax) cuts are varied for the estimation of the moments at |η| < 0.5. The

M and σ are observed to increases with pTmax up-to 2.0 GeV/c and gets saturated

above it for all centralities (top central and peripheral events have been shown only)

and for all colliding energies. The values of S increases, whereas the values of κ

decreases with increase in pTmax and gets saturated above pTmax = 2.0 GeV/c for

both cases, as shown in Fig. 7.8.

In Fig. 7.9, the κσ2 and Sσ are plotted for different pTmax for 0-5% and 60-

70% centralities. Both the observables show increasing trend and then above pTmax

=2.0 GeV/c saturation effects are observed for all colliding energies. The thermal

particles may carry more information about the underlying physics as compared to

hard particles ( pT > 2.0 GeV/c).

7.3.3 Effect of changing the track quality cuts

In the STAR TPC, the charged particles are tracked by using number of hit infor-

mation in each pad of a sector. The maximum number of hits, for a track is 45,

so for the analysis it can be varied for different track fit points. For good quality

tracks one can use large values of fit points but it decreases the number of charged

particle multiplicity of an event. So, to understand the effect of fit points for the

present analysis, the charged particles are counted for different fit points at |η| < 0.5

and 0.2 < pT < 2.0 GeV/c. In Fig 7.10, the various moments M,σ, S and κ, and

their products like, κσ2 and Sσ, are plotted as a function of different track fitting

points for 0-10% central events. It is observed that these various moments of the

net-charge distribution and their products show negligible effect within fit points 10

to 28 points. For the complete analysis, number of fit points 20 is used throughout
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Figure 7.7: The maximum pT cut-off dependency of efficiency uncorrected M and
σ are the plotted for different energies from

√
sNN=7.7 to 200 GeV at two 0-5% and

60-70% centralities.
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Figure 7.8: The maximum pT cut-off dependency of efficiency uncorrected S and κ
are the plotted for different energies from

√
sNN=7.7 to 200 GeV at two 0-5% and

60-70% centralities.
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Figure 7.9: The maximum pT cut-off dependency of efficiency uncorrected Sσ and
κσ2 are the plotted for different energies from

√
sNN=7.7 to 200 GeV at two 0-5%

and 60-70% centralities.
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the analysis.

Each charged particle track is projected to primary vertices in the STAR TPC.

The distance of closest approach (DCA) from the primary vertex for each track

can be varied from 0 to 3 cm. In Fig 7.11, the moments M,σ, S and κ, and their

products, κσ2 and Sσ, are plotted as a function of DCA for 0-10% central events.

There is small DCA dependency is observed.

7.4 Various moments and their products

Centrality dependency of the M , σ, S, κ for the net-charge distributions are ex-

tracted for Au+Au collisions at all seven colliding energies. In Fig. 7.12, the first

four efficiency uncorrected moments of the net-charge distributions are plotted in

terms 〈Npart〉 for all colliding energies. Similarly, in Fig. 7.13 that for efficiency

corrected results are plotted. The statistical errors dominate in most cases since the

systematic errors are within symbol size. For all the colliding energies, we observe

that the M and σ values increase from peripheral to central collisions, whereas S

and κ values decrease with increasing Npart. The centrality dependence of the mo-

ments can be understood by the central limit theorem (CLT), which assumes that

each of the collisions is a collection of a finite number of identical, independent

emission sources. Under this assumption, 〈Npart〉 can be considered a proxy for the

volume of the colliding system at a given centrality. The resulting CLT curves are

superimposed on the data points in Fig. 7.12 and 7.13. The χ2/ndf values, for the

CLT fitting are found to be below 1.5, 1.0, 1.6 and 2.0, in case of M , σ, S and

κ, respectively. Thus, the centrality dependence of the moments at a given energy

follows the general expectations form of CLT, indicating that the moments depend
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on the system volume. This is one of the reasons to construct different combinations

of moments, which removes the volume dependences.
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Figure 7.12: The efficiency uncorrected centrality dependency of various moments,
such as M , σ, S and κ are the plotted for different energies from

√
sNN=7.7 to 200

GeV. The dotted lines represents central limit theorem fitted for different colliding
energies.

Figure 7.14 shows both the efficiency uncorrected and corrected values of Sσ plot-

ted as a function of 〈Npart〉 for Au+Au collisions at each of the colliding energies.

In general, Sσ values are observed to decrease with increasing beam energy. The

efficiency corrected Sσ values show little higher as compared to that of uncorrected
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one. To understand the baseline for this product, expectations from Poisson statis-

tics and NBD baseline are studied. In this approach, the distributions for positive

and negative charged particles are assumed to follow Poisson and NBD statistics

without any dynamical correlations. The moments of the net-charge distributions

are then constructed using the mean values of the positive and negative charged

particle distributions for Poisson baseline. For NBD, both mean and variance of

positive and negative charged distributions are used. Details about the estimation

for the Poisson and NBD baseline can be found in Section 5.3 and 5.4, respectively.

For collisions at
√
sNN=200 GeV the data points agree well with the Poisson expec-

tations. For all other energies, deviations from Poisson expectations are observed,

and these deviations increase with the decrease of beam energy. The efficiency un-

corrected NBD expectations are also plotted for different beam energies as shown

in Fig. 7.14. The NBD expectations are close to Sσ for all centralities.

Figure 7.15 shows both the efficiency uncorrected and corrected values of κσ2 as

a function of 〈Npart〉 for Au+Au collisions at each of the colliding energies. Both the

statistical and systematic errors are indicated in figure. The efficiency corrected Sσ

shows little higher values as compared to that of uncorrected one. The expectation

from Poisson statistics for all cases are constant at unity, which are shown by dotted

lines. The efficiency uncorrected NBD expectations are also plotted for different

beam energies. Within the statistical uncertainties, the values of κσ2 are above the

Poisson expectations, with the exceptions of central collisions at lowest energy.

The centrality dependency of both the efficiency uncorrected and corrected σ2

M

for seven energies are plotted in Fig. 7.16. At a given colliding energies, the σ2

M

decreases goes from peripheral to central events. The σ2

M
increases with decrease
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in colliding energies. It implies that with increase in beam energies the net-charge

fluctuation (σ
2

M
) increases. The efficiency corrected values of σ2

M
show smaller values

than that of uncorrected one. In addition, the Poisson and efficiency uncorrected

NBD expectation are also plotted in Fig. 7.16. Both expectations show similar

centrality dependency behavior. The NBD expectations show larger than that of

Poisson for all centralities and beam energies. Figure 7.17 shows the beam-energy
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M
, Sσ and κσ2 are the plotted for

three centralities. The dotted lines represents the Poisson expectations for different
colliding energies. The blue dashed line represents HRG model predictions. The
vertical lines represent the statistical error bar and caps represent systematic error.
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dependence of σ2

M
, Sσ and κσ2, for two centrality bins, viz., 0-5%, and 60-70% of

the total cross section for efficiency corrected and uncorrected results. Both the

statistical and systematic errors are plotted. The results from Poisson expectations

is superimposed on the experimental data points. The values σ2

M
are observed to

increase with increasing beam energy. At all energies, σ2

M
shows lower values than

that of Poisson expectation as shown in the top panel of the figures (a) and (d).

The middle panel of the figures, (b) and (e), show the values of Sσ, which are close

to zero for
√
sNN=200 GeV and increase with decreasing beam energy for all thwo

centralities. The energy dependence of Sσ shows systematically large deviations

(with significance of deviation larger than 2.0) from that of Poisson expectations

below
√
sNN=27 GeV compared to those at higher energies. The bottom panel of

the figures, (c) and (f), show κσ2as a function of beam energy. For the non-central

collisions, these values show no energy dependence. Also for central collision, no

energy dependence is observed, excluding the lowest energy.

7.5 Extraction of freeze-out parameters

The experimentally measured higher order moments, Sσ3

M
and M

σ2 , can be used to

extract freeze-out parameter by comparing lattice QCD results as discussed in Sec-

tion 1.5. The beam energy dependance of efficiency corrected Sσ3

M
and M

σ2 are shown

in Fig. 7.18. The values of Sσ3

M
are close to ∼2 for

√
sNN= 7.7 to 62.4 GeV with

statistical uncertainty whereas for
√
sNN= 200 GeV, it is close to ∼0.3 with large

statistical uncertainty. In Table. 7.1 and 7.2, the values of Sσ3

M
and M

σ2 , are listed,

respectively, for different energy. The Lattice QCD estimation of RQ
31 for freeze-out

temperature, Tf = 150-190 MeV, is shown in shaded region in Fig. 7.18. The values
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M

for Au+Au Collisions at 0-10% centrality (for
√
sNN= 200 GeV, 0-17% centrality has

been taken to avoid large statistical error with negative value). The Sσ3

M
is related to

RQ
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QCD estimation region of RQ
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σ2 for Au+Au Collisions at 0-10% centrality (for

√
sNN= 200

GeV, 0-17% centrality has been taken ). The M
σ2 is related to RQ

12 of net-charge in
lattice QCD calculation.
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of M
σ2 increase with decrease in colliding energy. It implies, that with the increase

in colliding energy baryon chemical potential, µBf , decreases at freeze-out surface.

The exact value of µBf can be estimated by knowing exact Tf at given colliding

energy. The large statistics is required to reduce the statistical uncertainties in Sσ3

M
.

Figure 7.19: Diagrammatic representation of two limiting cases of Binomial distri-
bution [41].

Table 7.1: The values of RQ
31 and corresponding Tf for different energies are listed

below. All these values are estimated for 0-10% centrality whereas 0-17% for
√
sNN=

200 GeV. *Tf are taken from the Fig.7.19 and [79].

AuAu

√
sNN

(GeV)
RQ31 =
Sσ3

M

Tf (MeV)

200 0.370±2.168 >160

62.4 3.512±1.353 -

39 1.637±0.500
27 2.099±0.66 ∼140-160
19.6 2.229±0.56
11.5 2.290±0.710
7.7 1.849±0.790
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Table 7.2: The values of RQ
12 and corresponding µB/T for different energies are

listed below. All these values are estimated for 0-10% centrality whereas 0-17% for√
sNN= 200 GeV. *µB/T are taken from the Fig.7.19 and [79].

AuAu

√
sNN (GeV) RQ12 = M

σ3 µB/T

200 0.0125±1.6e-04 ∼0.15
62.4 0.036± 6.19e-04 ∼0.35-0.43
39 0.056±5.4e-04 ∼0.56-0.72
27 0.077±1.3e-04 ∼0.8-1.3
19.6 0.110±1.4e-04 ∼1.1-1.2
11.5 0.178±3.6e-04 -

7.7 0.261±1.6e-03 -



Chapter 8
Summary

Prime aim of the RHIC beam energy scan program is to map the QCD phase di-

agram and to search for the location of critical point. To achieve these goals, the

STAR experiment has collected data for Au+Au collisions at 7.7, 11.5, 19.6, 27,

39, 62.4 and 200 GeV, in the year 2010 and 2011. STAR experiment has unique

advantages with full 2π coverage in azimuth, and uniform η vs pT acceptance. This

program covers baryon chemical potential, µB, from 20-410 MeV in the QCD phase

diagram. All these make the STAR experiment one of the unique detector system

in the world to search for the QCD critical point.

Lattice QCD calculations have proposed that the higher order moments such

as variance (σ2), skewness (S) and kurtosis (κ), discussed in Section 4.1, of the

conserved charges (X = Q, B, and S) are related to respective higher order suscep-

tibilities. At the critical points, the higher order susceptibilities of the conserved

charges diverge. Therefore, the higher order moments of the conserved charge dis-

tribution as a function of beam energy, could show non-monotonic behavior at the
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critical point. Various suitable moments products, such as σ2

M
, Sσ and κσ2, are

constructed to cancel the volume in the susceptibilities of the conserved charges.

This thesis work covers the higher moments of net-charge distribution at RHIC en-

ergies. In order to understand the effect of background physics, like jet production,

jet-quenching, resonance production, baryon stopping, and thermal equllibrium etc.,

on the higher moments of the net-charge distribution, various models, like HIJING,

UrQMD, THERMINATOR, are studied. These model predictions set baseline for

the analysis. Besides these, independent Poisson and Negative Binomial assump-

tions for the positive and negative charged particles distribution have also been

studied. In these cases, the results set the baseline from the non-dynamical (or

statistical) origin.

For the estimation of higher moments of the net-charge distribution, extensive

data clean up processes have been performed. Centrality bin width correction has

been done to avoid centrality bin width effect. To avoid auto-correlation effect in the

higher moments of the net-charge distribution, new centrality definition is chosen.

In these cases, the uncorrected charged particles are selected outside the analysis

η-window. To validate these new centrality selection, extensive Monte Carlo sim-

ulation has been performed. Besides these, extensive study on various types of

statistical error estimation have been performed. Amongst them Booststrap and

Delta theorem have been proved to be robust method for the statistical error es-

timation for higher moments analysis. The efficiency correction for these higher

moments are also done by taking Binomial efficiency in the analysis. The efficiency

for all beam energies are also estimated from the STAR embedding data.
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The mean and width of net-charge distributions increases with increase in cen-

trality and also with the increase in beam energy. The skewness and kurtosis of the

distributions decrease with increasing centrality. The centrality evolution of these

higher order moments follow the trend of the Central Limit Theorem. The products

of moments are studied to cancel the volume dependance in the higher moments of

the net-charge distribution. The σ2

M
shows decreasing trend by increasing centrality,

whereas Sσ and κσ2 show negligible centrality dependence within the statistical

uncertainty. The values of σ2

M
are observed to increase with increasing beam energy.

At all energies, σ2

M
shows lower values than that of Poisson expectation. The values

of Sσ, which are close to zero for
√
sNN=200 GeV and increase with decreasing

beam energy for all centralities. The energy dependence of Sσ shows systematically

large deviations from that of Poisson expectations below
√
sNN=27 GeV compared

to those at higher energies. The values of κσ2as a function of beam energy show

no energy dependence for the non-central collisions. For central collision, no energy

dependence is observed excluding at lowest energy
√
sNN= 7.7 GeV. For the ex-

traction of the freeze-out parameters (Tf and µBf ) the combinations of Sσ3

M
and M

σ2

have beed studied for 0-10% central events. The values of Sσ3

M
, from the 7.7 to 200

GeV, lie between the values ∼3 to 0.36. These values imply Tf = 150 to 190 MeV

by comparing with lattice QCD calculation. By comparing lattice QCD calculation

with experimental measured M
σ2 , it is observed that values of the µBf are between

16 to 210 MeV (with statistical uncertainties) for 200 to 19.6 GeV beam energies.



Chapter 9
Outlook

The RHIC beam energy scan results for the higher moments of net-charge distri-

butions have been discussed in the above sections. The prime aim of this higher

moments analysis is to probe the QCD critical point in the phase diagram. This

analysis is very much affected by the statistical uncertainty. The width of the net-

charge distribution is quite large as compared to other conserved charge distribution,

like net-proton and net-kaon. It is very important to have large statistics to con-

clude about the results of the net-charge higher moments. In RHIC, it has been

proposed the beam energy scan phase-II program to take large collection of data at

low energies. In addition to this, an additional colliding energy at
√
sNN= 15 GeV

has also been proposed. Besides these, STAR experiment has also proposed to up-

grade inner-sector of STAR Time Projection Chamber (iTPC) for BES-II program.

This upgrade provide the effective |η| <1.7 unit, better momentum resolution, and

better dE/dx resolution in STAR TPC. Therefore, the forthcoming BES-II program

with large statistics data, large acceptance and better momentum resolution could

give clear and robust results on the QCD critical point in phase diagram.
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On the other-hand, recently the lattice QCD simulation [41, 42] suggests to ex-

tract the freeze-out parameters like Tf and µf , from the experimentally measured

net-charge higher moments without using phenomenological models. Whereas the

statistical thermalization model describes the freeze-out parameters quite well. Lat-

tice QCD calculation calculation reveals the signature of critical point in QCD phase

diagram, so it is necessary to put a phase boundary line estimated from the lattice

QCD calculation. In this approach, M/σ2 (χ1/χ2) shows dependence on µB, hence

it is considered as baryo-meter — which can be used to get the freeze-out baryon

chemical potential. The Sσ3/M (χ13/χ1) shows no dependance on baryon chemical

potential in leading order rather dependent on temperature, hence it can be used

as thermo-meter at a given baryon chemical potential. These two observable for

the net-charge distribution can be used for the freeze-out parameters. In this case,

it is assumed that all the charged particles freeze-out at same time and hence its

susceptibilities (χ) carry the information at the freeze-out. So, the higher moments

of the net-charge distribution can serve as tool to estimate the freeze-out parameters

by comparing lattice QCD results in the heavy-ion-collisions.
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Appendix A
Appendix

A.1 Sub-group method of error calculation

The Sub-group method is one of the simplest method for estimating statistical error

of a observable. In this method, the whole data sample (called parent sample) is

randomly splitted into n number of sub-samples. For example, if there is N of

events in a parent sample, then N
n

= x . Where n is the number of events in each

sub-sample and x = 2, 3, 4, 5...., represents number of sub-samples. The observables,

O, are estimated on each of these sub-samples. Then statistical error of O can be

defined as,

V ar(O) =
σ2

x− 1
. (A.1.1)

Here σ2 =< (Oi− < O >)2 > and < O >= 1
x

∑x
i=0Oi, where i = 2, 3, 4, 5..x number

of samples. In this case, 1/(x − 1) is used to avoid biased estimator on population

variance. In the sub-group method, it is good to use large number of sub-groups.
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But the disadvantage is that then it is purely dependent on the statistics. Besides

this, for higher moments case like 3rd, 4rd... order, this method doesn’t work well.

A.2 Analytic method of error calculation

In the analytic error estimation, propagation of error technique is used to get error

expression for the mean (M), standard deviation (σ), skewness (S) and kurtosis

(κ). The detail calculation can be found in Ref. [77]. The expression used for this

analysis are

Error(M) =
σ√
n
, (A.2.1)

Error(σ) =
σ√
n
, (A.2.2)

Error(S) =
3√
n
×
√
κ+ 2− S2, (A.2.3)

Error(σ) =
4√
n
×
√
< (N− < N >)6

σ6
− (κ+ 3)2 − S2. (A.2.4)

Above expressions have been derived assuming uncertainty of each event is equal

to uncertainty in ensemble of events. Beside this, while deriving these expressions,

covariance or correlation between observables are neglected. So, these expressions

yield large uncertainty in higher moments as shown in Fig 6.29.

A.3 Bootstrap method of error calculation

In this method, Monet carlo technique is used. Some information can be found in

Ref [78].
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Let’s consider a sample X = (x1, x2, x3, ...xn), where xi is drawn from a parent

distribution. So, for this sample, there can be nn number of ways to make samples

which is known as Bootstrap samples. For example, N = 2, X = (x1, x2). which can

be arranged 22 = 4 number of ways to make Bootstrap samples. Like X∗1 = (x1, x2),

X∗2 = (x1, x1), X∗3 = (x2, x2) and X∗4 = (x2, x1). Then, the standard deviation of

the Bootstrap replications gives the error of the observables.

ŝerr =

√∑B
b=1[s(X∗b )− s(.)]2

B − 1
. (A.3.1)

Here s(.) =
∑B

b=1
s(X∗

b)
B

, B represents the number of Bootstrap samples. The typical

value of B should be ≥200. This method needs huge computational tasks and for

large statistics, as in heavy ion collisions experimental events, its processing time is

very slow.
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